- No elements found. Consider changing the search query.
āļāļąāļāļĐāļ°:
Data Analysis, Big Data
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Work collaboratively with data engineers and data architects to acquire new data from internal and external source systems.
- Support business initiatives and projects by performing data wrangling and exploratory data analysis, discovering trends and patterns, building predictive models and machine learning algorithms, etc., based on the CRISP-DM methodology and agile approach.
- Stay up to date with big data and analytical techniques, such as machine learning, d ...
- Provide analytics expertise, directions and guidance to business leads through turning insights into business action so as to improve sales and customer profitability.
- Present summary of analyses including data monetization on large datasets using advanced analytics tools and data visualization techniques.
- Lead implementation of AI models and business rules incorporated in automated business processes.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
āđāļĄāđāļāļģāđāļāđāļāļāđāļāļāļĄāļĩāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļģāļāļēāļ
āļāļąāļāļĐāļ°:
Python, SQL, Database Administration, English, Thai
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŋ35,000 - āļŋ45,000, āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Guide and train new customers to confidently use our system.
- Monitor customer activity, troubleshoot basic issues, and coordinate with internal teams.
- Analyze and manage customer data to ensure readiness for real-time use.
- Work closely with logistics, operations, and tech teams to deliver a seamless onboarding experience.
- Travel and visit customer sites.
- Experience in Customer Support or Data Analysis is a plus new graduates are welcome to apply.
- Proficiency in Excel and SQL; Python skills are a plus.
- Excellent communication skills in both Thai and English.
- Adaptable, quick to learn, and able to work under pressure.
- Educational background in IT, Computer Science, or related fields is preferred.
- Allows you to apply your skills in data, technology, and customer service.
- Supports your personal and professional development.
āļāļąāļāļĐāļ°:
Research, SQL, Statistics, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Provide data-driven insights to improve decision making and identify business opportunities.
- Build and enhance various creditability scoring models.
- Evaluate performance for product experimentation.
- Help improve data collection for website and mobile apps to better understand user behaviors.
- Present findings to different types of audiences.
- Facilitate some simple data queries/extraction that help business operations.
- Research for better improvements in data analytics area.
- Some hands-on experience in crunching data to uncover insights by writing SQL,.
- Python, R scripts, and being familiar with spreadsheets.
- A passion to gain a deeper yet practical understanding of statistics.
- and econometrics techniques.
- Fair understanding of what drives the success of predictive model implementation.
- for subject creditability purpose.
- Some technical knowledge in data collection from websites or mobile apps.
- Ability to translate business problems into analytics questions, bounce ideas,.
- and communicate findings.
- Intermediate fluency in English.
- Machine Learning engineering.
- Operations Research (mathematical optimisation).
- Business Intelligence tools for data democratisation.
- Data visualisation development in web browser.
- NoSQL databases and Big Data platforms.
- Data Engineering and Software Engineering.
- āļāļĢāļ°āļāļąāļāļŠāļļāļāļ āļēāļ.
- āļāļĢāļ°āļāļąāļāļŠāļąāļāļāļĄ.
- āļāļāļāļāļļāļāļŠāļģāļĢāļāļāđāļĨāļĩāđāļĒāļāļāļĩāļ.
- āđāļĒāļĩāđāļĒāļĄāđāļāđ āđāļĒāļĩāđāļĒāļĄāļāļĨāļāļ.
- āļāļāļāļāļ§āļąāļāļ§āļąāļāđāļāļīāļāļāļāļąāļāļāļēāļ.
- āļāļĢāļ§āļāļŠāļļāļāļ āļēāļāļāļĢāļ°āļāļģāļāļĩ.
- āđāļāļīāļāļāđāļ§āļĒāđāļŦāļĨāļ·āļāļāļēāļāļĄāļāļāļĨāļŠāļĄāļĢāļŠ.
- āđāļāļīāļāļāđāļ§āļĒāđāļŦāļĨāļ·āļāļāļēāļāļĻāļ.
- āļāļēāļĢāļāļķāļāļāļāļĢāļĄāđāļĨāļ°āļāļąāļāļāļēāļāļāļąāļāļāļēāļ.
- āļāđāļēāļāļāļāđāļāļāļāļīāđāļĻāļĐ.
- āđāļāļāļąāļŠāļāļēāļĄāļāļĨāļāļēāļ / āļāļĨāļāļĢāļ°āļāļāļāļāļēāļĢ.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
7 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Financial Modeling, Cash Flow Management, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŋ45,000 - āļŋ85,000, āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- āļāļĢāļīāļŦāļēāļĢāđāļĨāļ°āļāļģāļāļąāļāļāļđāđāļĨāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļāļ·āđāļāļŠāļāļąāļāļŠāļāļļāļāļāļēāļĢāļāļąāļāļŠāļīāļāđāļāđāļāļīāļāļāļĨāļĒāļļāļāļāđ.
- āļāļąāļāļāļģ āļ§āļīāđāļāļĢāļēāļ°āļŦāđ āđāļĨāļ°āļāļģāđāļŠāļāļāļĢāļēāļĒāļāļēāļāļāļēāļāļāļēāļĢāđāļāļīāļ āļāļĨāļāļāļāđāļāļ āđāļĨāļ°āļāļĢāļ°āļĄāļēāļāļāļēāļĢāđāļāļĄāļīāļāļīāļāđāļēāļ āđ āđāļŦāđāļŠāļāļāļāļĨāđāļāļāļāļąāļāđāļāļāļāļēāļāđāļĨāļ°āļāđāļĒāļāļēāļĒāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļĻāļķāļāļĐāļēāđāļĨāļ°āļāļīāļāļāļēāļĄāđāļāļ§āđāļāđāļĄāļāļēāļāđāļĻāļĢāļĐāļāļāļīāļ āļāļēāļĢāđāļāļīāļ āđāļĨāļ°āļāļĨāļēāļāļāļēāļĢāļĨāļāļāļļāļ āļāļąāđāļāđāļāđāļĨāļ°āļāđāļēāļāļāļĢāļ°āđāļāļĻ āđāļāļ·āđāļ āļāļģāļĄāļē āļāļĢāļ°āđāļĄāļīāļāđāļāļāļēāļŠāđāļĨāļ°āļāļ§āļēāļĄāđāļŠāļĩāđāļĒāļāļāļĩāđāļāļēāļāļ°āđāļāļīāļāļāļķāđāļ.
- āļ§āļēāļāđāļāļ āļāļģāļŦāļāļ āđāļĨāļ°āļāļĢāļąāļāļāļĨāļĒāļļāļāļāđāļāđāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļāđāļŦāđāđāļŦāļĄāļēāļ°āļŠāļĄāļāļąāļāđāļāđāļēāļŦāļĄāļēāļĒāļāļāļāļāļĢāļīāļĐāļąāļāļ āļēāļĒāđāļāđāļāļĢāļāļāļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļ§āļēāļĄāđāļŠāļĩāđāļĒāļāļāļĩāđāļāļģāļŦāļāļ.
- āļāļĢāļīāļŦāļēāļĢāļāļĩāļĄāļāļēāļāļāđāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļŦāđāļŠāļēāļĄāļēāļĢāļāļāļāļīāļāļąāļāļīāđāļāđāļāļĒāđāļēāļāļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļ āđāļĨāļ°āļāļąāļāļāļēāļĻāļąāļāļĒāļ āļēāļāļāļĩāļĄāļāļēāļāđāļŦāđāļŠāļāļāļāļĨāđāļāļāļāļąāļāļāļīāļĻāļāļēāļāļāļāļāļāļāļāđāļāļĢ.
- āļāļĢāļ°āļŠāļēāļāļāļēāļāđāļĨāļ°āđāļŦāđāļāļģāļāļĢāļķāļāļĐāļēāđāļāđāļŦāļāđāļ§āļĒāļāļēāļāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļ āđāļāļ·āđāļāļŠāļāļąāļāļŠāļāļļāļāļāļēāļĢāļāļģāđāļāļīāļāļāļēāļāļāđāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļāļāļīāļāļąāļāļīāļāļēāļāļāļ·āđāļ āđ āļāļĩāđāđāļāđāļĢāļąāļāļĄāļāļāļŦāļĄāļēāļĒāļāļēāļāļāļđāđāļāļąāļāļāļąāļāļāļąāļāļāļē.
- āļāļāļīāļāļąāļāļīāļāļēāļāļāļĒāđāļēāļāđāļāļāļĒāđāļēāļāļŦāļāļķāđāļāļŦāļĢāļ·āļāļāļąāđāļāļŦāļĄāļāļāļāļāļāļāļāļēāļāļāļēāļ āļāļąāļāļāļĩāđ.
- āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļāļąāļāļāļģāļĢāļēāļĒāļāļēāļāļāđāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ.
- āļāļąāļāļāļģāđāļĨāļ°āļāļģāđāļŠāļāļ āļĢāļēāļĒāļāļēāļāļāļēāļĢāļĨāļāļāļļāļāļĢāļēāļĒāđāļāļ·āļāļ āļĢāļēāļĒāđāļāļĢāļĄāļēāļŠ āđāļĨāļ°āļĢāļēāļĒāļāļĩ āļāđāļāļāļđāđāļāļĢāļīāļŦāļēāļĢ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđ āļāļĨāļāļāļāđāļāļāļāļēāļāļāļēāļĢāļĨāļāļāļļāļ āđāļĨāļ°āļāļāļāđāļāļĩāđāļĒāļĢāļąāļ āļĢāļ§āļĄāļāļķāļāļāļĢāļ°āļĄāļēāļāļāļēāļĢāļĨāđāļ§āļāļŦāļāđāļē 3-5 āļāļĩ.
- āļĻāļķāļāļĐāļēāđāļĨāļ°āļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļāļ§āđāļāđāļĄāļāļēāļāđāļĻāļĢāļĐāļāļāļīāļ āđāļāļ·āđāļāļāļēāļāļāļēāļĢāļāđāđāļāļ§āđāļāđāļĄāļāļāļāļāļĨāļēāļāđāļĨāļ°āļāļ§āļēāļĄāđāļāđāļāđāļāđāļāđāđāļāļāļēāļĢāļĨāļāļāļļāļ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļŠāļĢāļļāļāļāđāļāļĄāļđāļĨāļāļēāļāļāļēāļĢāđāļāļīāļ āđāļāđāļ āļāļāļāļļāļĨ āļāļāļāļģāđāļĢāļāļēāļāļāļļāļ āđāļĨāļ°āļāļāļāļĢāļ°āđāļŠāđāļāļīāļāļŠāļ āđāļāļ·āđāļāļāļĢāļ°āđāļĄāļīāļāļŠāļāļēāļāļ°āļāļēāļāļāļēāļĢāđāļāļīāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļāļģāļāļąāļāļāļđāđāļĨāļāļēāļĢāļāļąāļāļāļģāļĢāļēāļĒāļāļēāļāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āļĢāļ§āļĄāļāļķāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļĨāļāļāļāđāļāļāļāļēāļāļāļēāļĢāđāļāļīāļ.
- āļ§āļēāļāļāļĨāļĒāļļāļāļāđāļāđāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļāļ·āđāļāđāļāļīāđāļĄāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļāđāļĨāļ°āļāļĨāļāļāļāđāļāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļāļīāļāļĨāļķāļāđāļāļĩāđāļĒāļ§āļāļąāļāļāļāļāļēāļĢāđāļāļīāļ āđāļĨāļ°āļāļąāļāļāļģāļāļĢāļ°āļĄāļēāļāļāļēāļĢāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ.
- āļĻāļķāļāļĐāļēāđāļāļ§āđāļāđāļĄāđāļĻāļĢāļĐāļāļāļīāļ āļāļēāļĢāđāļāļīāļ āđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļāļ·āđāļāļāļģāļĄāļēāļāļĢāļ°āđāļĄāļīāļāļāļĨāļāļĢāļ°āļāļāđāļĨāļ°āđāļāļāļēāļŠāđāļāļāļēāļĢāļĨāļāļāļļāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļāļīāļāļāļēāļĄāđāļĨāļ°āļāļĢāļąāļāļāļĨāļĒāļļāļāļāđāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļāđāļŦāđāļŠāļāļāļāļĨāđāļāļāļāļąāļāđāļāđāļēāļŦāļĄāļēāļĒāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļāļēāļĢāļāļąāļāļāļĢāļ°āļāļļāļĄāļāļāļ°āļāļāļļāļāļĢāļĢāļĄāļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļēāļĢāļĨāļāļāļļāļāđāļĨāļ°āļāļĢāļīāļŦāļēāļĢāļāļ§āļēāļĄāđāļŠāļĩāđāļĒāļāļāđāļēāļāļāļēāļĢāļĨāļāļāļļāļāļāļĒāđāļēāļāļāđāļāļĒāđāļāļĢāļĄāļēāļŠāļĨāļ°āļŦāļāļķāđāļāļāļĢāļąāđāļ āļŦāļĢāļ·āļāđāļĄāđāļāđāļāļĒāļāļ§āđāļēāļāļĩāļĨāļ°āļŠāļĩāđāļāļĢāļąāđāļ.
- āļāļĢāļīāļŦāļēāļĢāļāļĩāļĄāļāļēāļāļāļąāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āļĢāļ§āļĄāļāļķāļāļāļēāļĢāļāļąāļāļāļēāđāļĨāļ°āđāļŠāļĢāļīāļĄāļŠāļĢāđāļēāļāļĻāļąāļāļĒāļ āļēāļāļāļāļāļāļĩāļĄ.
- āļāļģāđāļŠāļāļāļĢāļēāļĒāļāļēāļāđāļĨāļ°āļāđāļāđāļŠāļāļāđāļāļ°āļāđāļēāļāļāļĨāļĒāļļāļāļāđāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļāđāļāļđāđāļāļĢāļīāļŦāļēāļĢāļĢāļ°āļāļąāļāļŠāļđāļ.
- āļāļĢāļ°āļŠāļēāļāļāļēāļāļāļąāļāļŦāļāđāļ§āļĒāļāļēāļāļ āļēāļĒāđāļāđāļĨāļ°āļ āļēāļĒāļāļāļāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļ āļĢāļ§āļĄāļāļķāļāļāļāļēāļāļēāļĢ āļŠāļāļēāļāļąāļāļāļēāļĢāđāļāļīāļ āļāļĢāļīāļĐāļąāļāļŦāļĨāļąāļāļāļĢāļąāļāļĒāđāļāļąāļāļāļēāļĢāļāļāļāļāļļāļ āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļāļąāļāļāļģāļĢāļēāļĒāļāļēāļāļāđāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ.
- āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļāļąāļāļāļģāļĢāļēāļĒāļāļēāļ āļāļĢāļīāļĐāļąāļāļāļĩāđāļāļĢāļķāļāļĐāļēāļāļēāļĢāļĨāļāļāļļāļ āđāļĨāļ°āļŦāļāđāļ§āļĒāļāļēāļāļ āļēāļāļĢāļąāļāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļāļąāļāļāļģāļĢāļēāļĒāļāļēāļāļāđāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ.
- āļāļąāļāļāļģāđāļĨāļ°āļāļģāđāļŠāļāļ āļĢāļēāļĒāļāļēāļāļĨāļāļāļļāļāļĢāļēāļĒāđāļāļ·āļāļ āļĢāļēāļĒāđāļāļĢāļĄāļēāļŠ āđāļĨāļ°āļĢāļēāļĒāļāļĩ āļāđāļāļāļđāđāļāļĢāļīāļŦāļēāļĢ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđ āļāļĨāļāļāļāđāļāļāļāļēāļāļāļēāļĢāļĨāļāļāļļāļ āđāļĨāļ°āļāļāļāđāļāļĩāđāļĒāļĢāļąāļ āļĢāļ§āļĄāļāļķāļāļāļĢāļ°āļĄāļēāļāļāļēāļĢāļĨāđāļ§āļāļŦāļāđāļē 3-5 āļāļĩ.
- āļĻāļķāļāļĐāļēāđāļĨāļ°āļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļāļ§āđāļāđāļĄāļāļēāļāđāļĻāļĢāļĐāļāļāļīāļ āđāļāļ·āđāļāļāļēāļāļāļēāļĢāļāđāđāļāļ§āđāļāđāļĄāļāļāļāļāļĨāļēāļāđāļĨāļ°āļāļ§āļēāļĄāđāļāđāļāđāļāđāļāđāđāļāļāļēāļĢāļĨāļāļāļļāļ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļĨāļ°āļŠāļĢāļļāļāļāđāļāļĄāļđāļĨāļāļēāļāļāļēāļĢāđāļāļīāļ āđāļāđāļ āļāļāļāļļāļĨ āļāļāļāļģāđāļĢāļāļēāļāļāļļāļ āđāļĨāļ°āļāļāļāļĢāļ°āđāļŠāđāļāļīāļāļŠāļāđāļāļ·āđāļāļāļĢāļ°āđāļĄāļīāļāļŠāļāļēāļāļ°āļāļēāļāļāļēāļĢāđāļāļīāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļāļēāļĢāļ§āļēāļāđāļāļāđāļĨāļāļāļģāļŦāļāļāļāļĨāļĒāļļāļāļāđāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ.
- āļāļąāļāļāļģ Financial Forecast, Cashflow Projection āđāļĨāļ° Feasibility Study.
- āļ§āļēāļāđāļāļāđāļĨāļ°āļāļģāļŦāļāļ āļāļĨāļĒāļļāļāļāđāļāļēāļĢāļĨāļāļāļļāļ āđāļāļĒāļāđāļēāļāļāļīāļāļāļēāļāļāđāļāļĄāļđāļĨāđāļāļīāļāļĨāļķāļāđāļĨāļ°āđāļāļ§āđāļāđāļĄāļāļĨāļēāļ.
- āļāļīāļāļāļēāļĄāđāļĨāļ°āļāļĢāļąāļāļāļĢāļļāļāļāļĨāļĒāļļāļāļāđāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļāļ·āđāļāđāļāļīāđāļĄāļĄāļđāļĨāļāđāļēāđāļĨāļ°āļĨāļāļāļ§āļēāļĄāđāļŠāļĩāđāļĒāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđ S.W.O.T. (Strengths, Weakness, Opportunities, Threats) āđāļāļ·āđāļāļĢāļ°āļāļļāļāļļāļāđāļāđāļ āļāļļāļāļāđāļāļ āđāļāļāļēāļŠ āđāļĨāļ°āļāļ§āļēāļĄāđāļŠāļĩāđāļĒāļāļāļĩāđāļāļēāļāđāļāļīāļāļāļķāđāļ.
- āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļĩāļĄāđāļĨāļ°āļāļēāļĢāļāļģāļāļēāļāļĢāđāļ§āļĄāļāļąāļāļŦāļāđāļ§āļĒāļāļēāļāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļ.
- āļāļĢāļīāļŦāļēāļĢāđāļĨāļ°āļāļąāļāļāļēāļāļĩāļĄāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļāđāļŦāđāļĄāļĩāļĻāļąāļāļĒāļ āļēāļāļŠāļđāļāļŠāļļāļ.
- āļāļĢāļ°āļŠāļēāļāļāļēāļāļāļąāļ āļŦāļāđāļ§āļĒāļāļēāļāļ āļēāļĒāđāļ āđāļāđāļ āļāđāļēāļĒāļāļąāļāļāļĩ āļāđāļēāļĒāļāļĢāļīāļŦāļēāļĢāļāļ§āļēāļĄāđāļŠāļĩāđāļĒāļ āđāļĨāļ°āļŦāļāđāļ§āļĒāļāļēāļāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļ āđāļāļ·āđāļāđāļŦāđāļĄāļąāđāļāđāļāļ§āđāļēāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļāđāļāđāļāđāļāļāļēāļĄāđāļāļāļāļĩāđāļāļģāļŦāļāļ.
- āļāļīāļāļāđāļāđāļĨāļ°āļāļģāļāļēāļāļĢāđāļ§āļĄāļāļąāļ āļŦāļāđāļ§āļĒāļāļēāļāļ āļēāļĒāļāļāļ āđāļāđāļ āļŠāļāļēāļāļąāļāļāļēāļĢāđāļāļīāļ āļāļĢāļ·āļĐāļąāļāļāļĩāđāļāļĢāļķāļāļĐāļēāļāļēāļĢāļĨāļāļāļļāļ āđāļĨāļ°āļŦāļāđāļ§āļĒāļāļēāļāļāļģāļāļąāļāļāļđāđāļĨ.
- āļāļēāļĢāļāļīāļāļāđāļāļāđāļēāļ§āļŠāļēāļĢāđāļĨāļ°āļāļąāļāļāļąāļĒāļ āļēāļĒāļāļāļāļāļĩāđāļŠāđāļāļāļĨāļāđāļāļāļĢāļīāļĐāļąāļ.
- āļāļīāļāļāļēāļĄ āđāļāļ§āđāļāđāļĄāđāļĻāļĢāļĐāļāļāļīāļ āļāļĨāļēāļāļāļēāļĢāđāļāļīāļ āđāļĨāļ°āļāđāļĒāļāļēāļĒāļ āļēāļāļĢāļąāļ āļāļĩāđāļāļēāļāļŠāđāļāļāļĨāļāđāļāļāļĨāļĒāļļāļāļāđāļāļēāļĢāļĨāļāļāļļāļāļāļāļāļāļĢāļīāļĐāļąāļ.
- āļ§āļīāđāļāļĢāļēāļ°āļŦāđ āļāļąāļāļāļąāļĒāļ āļēāļĒāđāļāđāļĨāļ°āļ āļēāļĒāļāļāļ āļāļĩāđāļāļēāļāļāļĢāļ°āļāļāļāđāļāļāļĢāļīāļĐāļąāļ āļāļąāđāļāđāļāđāļāļīāļāļāļ§āļāđāļāļīāļāļĨāļ āļāļĢāđāļāļĄāļāļģāđāļŠāļāļāđāļāļ§āļāļēāļāļĢāļąāļāļĄāļ·āļ.
- āļŠāļāļąāļāļŠāļāļļāļāļāļēāļāļāļ·āđāļ āđ āļāļēāļĄāļāļĩāđāđāļāđāļĢāļąāļāļĄāļāļāļŦāļĄāļēāļĒ āđāļāļ·āđāļāđāļŦāđāļŦāļāđāļ§āļĒāļāļēāļāđāļĨāļ°āļāļĢāļīāļĐāļąāļ āđāļāļĒāđāļĨāļāļāđ āļāļĢāļīāļ§āļīāđāļĨāļ āļāļēāļĢāđāļ āļāļģāļāļąāļāļ āļēāļĢāļāļīāļāļāļĩāđāļāļģāļŦāļāļ.
- āđāļāđāļĢāļąāļāļāļĢāļīāļāļāļēāļāļĢāļĩāļŦāļĢāļ·āļāļāļļāļāļ§āļļāļāļīāļāļĒāđāļēāļāļāļ·āđāļāļāļĩāđāđāļāļĩāļĒāļāđāļāđāļĢāļ°āļāļąāļāđāļāļĩāļĒāļ§āļāļąāļāđāļāļŠāļēāļāļēāļ§āļīāļāļēāđāļ āļŠāļēāļāļēāļ§āļīāļāļēāļŦāļāļķāđāļ āļāļēāļāļāļēāļĢāđāļāļīāļ āļāļąāļāļāļĩ āļāļĢāļīāļŦāļēāļĢāļāļļāļĢāļāļīāļ āđāļĻāļĢāļĐāļāļŠāļēāļŠāļāļĢāđ.
- āļĄāļĩāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāđāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļēāļĢāđāļāļīāļ āļāļēāļĢāļĨāļāļāļļāļ āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļŠāļīāļāļāļĢāļąāļāļĒāđāļŦāļĢāļ·āļāļāļēāļāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļāļāļĒāđāļēāļāļāđāļāļĒ 7-10 āļāļĩ āđāļĨāļ°āļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļĢāļ°āļāļąāļāļāļĢāļīāļŦāļēāļĢ 3-5 āļāļĩ.
- āļĄāļĩāļāļ§āļēāļĄāļĢāļđāđāļāđāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļāļāļēāļĢāđāļāļīāļ āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļāļĢāđāļāļāļēāļĢāļĨāļāļāļļāļ āļāļēāļĢāļāļąāļāļāļģāļāļĢāļ°āļĄāļēāļāļāļēāļĢāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļāļĢāļ°āđāļĄāļīāļāļĄāļđāļĨāļāđāļēāđāļāļĢāļāļāļēāļĢ.
- āļĄāļĩāļāļ§āļēāļĄāđāļāđāļēāđāļāđāļāļāļēāļĢāļāļĨāļēāļāļāļļāļ āļāļĨāļēāļāđāļāļīāļ āđāļāļĢāļ·āđāļāļāļĄāļ·āļāļāļēāļĢāļĨāļāļāļļāļāļāļąāđāļāđāļāļāļĢāļ°āđāļāļĻāđāļĨāļ°āļāđāļēāļāļāļĢāļ°āđāļāļĻ.
- āļĄāļĩāļāļąāļāļĐāļ°āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļąāļāļāļēāļĢāļāļĩāļĄ āļāļēāļĢāļŠāļ·āđāļāļŠāļēāļĢ āđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļŠāļēāļāļāļēāļāļāļĩāđāļāļĩ.
- āļĄāļĩāļāļąāļāļĐāļ°āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļąāļāļāļēāļĢāļāļĩāļĄ āļāļēāļĢāļŠāļ·āđāļāļŠāļēāļĢ āđāļĨāļ°āļāļēāļĢāļāļĢāļ°āļŠāļēāļāļāļēāļāļāļĩāđāļāļĩ.
- āļŠāļēāļĄāļēāļĢāļāđāļāđāđāļāđāļāļĢāđāļāļĢāļĄāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāđāļĨāļ°āļāļīāļāļāđāđāļ§āļĢāđāļāļēāļāļāļēāļĢāđāļāļīāļāđāļāđ (āđāļāđāļ SETSMART, SETTRADE Streaming, Bisnews, ThaiBMA Bloomberg, Reuters āļāļ°āļāļīāļāļēāļĢāļāļēāđāļāđāļāļāļīāđāļĻāļĐ).
- āļĄāļĩāļāļąāļāļĐāļ°āļāļēāļĢāļāļīāļāđāļāļīāļāļāļĨāļĒāļļāļāļāđ āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāđāļāļīāļāļāļĢāļīāļĄāļēāļ āđāļĨāļ°āļāļēāļĢāđāļāđāđāļāļāļąāļāļŦāļē.
- āļāļ§āļēāļĄāļĢāļđāđ āļāļąāļāļĐāļ° āđāļĨāļ°āļŠāļĄāļĢāļĢāļāļ°āļāļĩāđāļāļģāđāļāđāļāđāļāļāļēāļ.
- āļĄāļĩāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāđāļēāļāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāļāļēāļāļāļēāļĢāđāļāļīāļāđāļĨāļ°āļāļēāļĢāļĨāļāļāļļāļ āđāļĄāđāļāđāļāļĒāļāļ§āđāļē 7-10 āļāļĩ.
- āļĄāļĩāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāđāļāļāļģāđāļŦāļāđāļ āļāļđāđāļāļąāļāļāļēāļĢ āļŦāļĢāļ·āļ āļāļđāđāļāļĢāļīāļŦāļēāļĢāļĢāļ°āļāļąāļāļŠāļđāļ āļāļĒāđāļēāļāļāđāļāļĒ 3 āļāļĩ.
- āļĄāļĩāļāļąāļāļĐāļ° āļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāđāļāļĄāļđāļĨāļāļąāđāļāļŠāļđāļ āđāļĨāļ°āļŠāļēāļĄāļēāļĢāļāđāļāđāđāļāļĢāđāļāļĢāļĄ Excel, Power BI āļŦāļĢāļ·āļāļāļāļāļāđāđāļ§āļĢāđāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļāđāļāđāļāļĩ.
- āļĄāļĩāļāļ§āļēāļĄāđāļāđāļēāđāļāđāļāļĩāđāļĒāļ§āļāļąāļ Financial Modeling, Cashflow Management, āđāļĨāļ° Risk Management.
- āļĄāļĩāļāļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļāđāļāļāļēāļĢāļāļģāđāļŠāļāļāļāđāļāļĄāļđāļĨāđāļāļīāļāļāļĨāļĒāļļāļāļāđāļāļĢāļīāļŦāļēāļĢāļĢāļ°āļāļąāļāļŠāļđāļ.
- āļĄāļĩāļāļąāļāļĐāļ°āļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļĩāļĄ āđāļĨāļ°āļŠāļēāļĄāļēāļĢāļāļāļģāļāļēāļāļĢāđāļ§āļĄāļāļąāļāļŦāļāđāļ§āļĒāļāļēāļāļāļĩāđāđāļāļĩāđāļĒāļ§āļāđāļāļāđāļāđāļāļĒāđāļēāļāļĄāļĩāļāļĢāļ°āļŠāļīāļāļāļīāļ āļēāļ.
- āļĄāļĩāļāļąāļāļĐāļ°āļ āļēāļĐāļēāļāļąāļāļāļĪāļĐāđāļāļāļēāļĢāļāļīāļāļāđāļāļŠāļ·āđāļāļŠāļēāļĢāđāļāđāļĢāļ°āļāļąāļāļāļĩ.
- āļāļēāļĄāļāļĢāļīāļĐāļąāļ āđāļāļĒāđāļĨāļāļāđ āļāļĢāļīāļ§āļīāđāļĨāļ āļāļēāļĢāđāļ āļāļģāļāļąāļ āļāļĢāļ°āļāļēāļĻāļāļēāļĄāļāļģāđāļŦāļāđāļāļāļēāļ.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
5 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Statistical Analysis, Statistics, Python
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Architect and deploy sophisticated statistical models and advanced analytics solutions that transform customer understanding through segmentation, predictive modeling, and behavioral analysis.
- Lead the development of custom data-driven solutions leveraging machine learning and advanced analytics for diverse marketing applications.
- Design and implement analytics frameworks that enhance campaign performance, enable real-time insights, and optimize customer journey understanding.
- Collaborate closely with MarTech platforms, CRM systems, and data infrastructure to seamlessly integrate analytics capabilities into marketing strategies.
- Partner with data engineers and technology teams to build scalable analytics solutions adaptable across different industries and business needs.
- Conduct advanced analytics and statistical analysis to uncover actionable insights and predictive patterns that drive measurable business outcomes.
- Leverage and integrate emerging AI models and technologies to enhance analytical capabilities and translate complex findings into strategic business recommendations.
- Lead innovation initiatives by staying at the forefront of data science advancements and identifying new opportunities for analytical solutions that command premium positioning and drive revenue growth.
- Qualifications Advanced degree in Data Science, Statistics, Computer Science, or related field.
- 5+ years of experience in Data Science.
- Expert proficiency in Python, SQL, and modern data science frameworks (scikit-learn, statistical modeling tools).
- Proven track record in developing and deploying customer segmentation, predictive modeling, and advanced analytics solutions.
- Strong foundation in statistical analysis, customer analytics, and machine learning.
- Experience with cloud platforms (AWS/GCP/Azure) and data pipeline development.
- Familiarity with CDP and analytics platforms.
- Advanced knowledge of data visualization tools (Tableau, Power BI) and analytics dashboarding.
- Experience working with and integrating AI models into business applications.
- Demonstrated ability to translate complex analytical insights into actionable business strategies and recommendations.
- Demonstrated ability to drive innovation and deliver business impact in fast-paced environments.
- Growth mindset with exceptional collaborative and adaptive capabilities.
- Strong foundation in experimentation and A/B testing frameworks.
- Outstanding analytical and problem-solving capabilities.
- Excellent communication skills across diverse stakeholder groups.
- Natural collaborator with innovative mindset and continuous learning orientation #LI-CW1.
- Location: Bangkok Brand: Dentsu Cxm Time Type: Full time Contract Type: Permanent
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
2 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Biology, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŋ120,000 - āļŋ165,000, āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Accelerated Development: Our venture studio model streamlines the typically lengthy process of biotech innovation. With access to expert operational, legal, finance, and HR teams, you can bypass common startup hurdles and focus immediately on scientific advancement and strategic growth..
- Integrated Resource Access: You will have direct access to state-of-the-art labs, cutting-edge infrastructure, and specialized development and product teams tailored to your project s unique needs facilitating rapid iteration and optimized drug develop ...
- Collaborative Synergies: Joining our venture studio connects you with a vibrant ecosystem of experienced entrepreneurs, distinguished scientists, and industry leaders. This collaborative environment encourages cross-pollination of ideas, mentoring opportunities, and strategic partnerships, enhancing both innovation and your professional growth..
- Strategic Support and Investment: Beyond initial capital, Great Good provides ongoing strategic guidance and operational support. Our comprehensive back-office resources help manage day-to-day complexities while our investment in your venture ensures you have the means to scale quickly and capture market opportunities..
- Enhanced Commercial Potential: By working under the venture studio umbrella, you not only drive scientific breakthroughs but also elevate the commercial viability of your project. Our model is designed to maximize innovation in drug therapeutics and generate significant market value, positioning your venture for long-term success and impactful industry leadership..
- About the Role.
- We are seeking a motivated and experienced CRISPR Scientist to join our dynamic R&D team and drive the design, execution, and analysis of our gene editing projects. If you are passionate about translating innovative science into transformative medicine, we encourage you to apply..
- Design and execute experiments using various CRISPR-Cas systems (e.g., OPENCRISPR1, Cas9, Cas12a, Base Editors, Prime Editors) for gene editing in mammalian cells, including primary cells and immortalized cell lines. This scope of work is expected to include using machine learning platforms to screen, analyze, synthesize and test enzymes of the Cas and deaminase classes as well as nickase conversion..
- Develop and optimize methods for gRNA design, delivery (e.g., lipofectamine, lipid nanoparticles, electroporation), and assessment of editing efficiency and specificity using PCR and NGS technologies..
- Analyze and interpret complex data sets, including molecular biology assays (qPCR, Western Blot, ELISA), next-generation sequencing (NGS) data for on-target and off-target editing, and functional cell-based assays..
- Culture and manipulation of various cell lines (HEK-293, HeLa, iPSCs, and T cells), with a focus on validating utility of novel complexes to perform precise editing in cells..
- Troubleshoot experimental hurdles and contribute creative solutions to accelerate project timelines. This will include minimizing off-target and bystander editing by correct selection of PAMs and other critical sequences..
- Document experiments in electronic lab notebooks and present results clearly at internal meetings..
- Stay current with the latest scientific literature, technology advancements, and regulatory requirements pertaining to CRISPR and gene therapy..
- Collaborate effectively with interdisciplinary teams including technicians and scientists, in the immunology, cell biology, drug development and bioinformatics fields..
- Required.
- Ph.D. in Molecular Biology, Cell Biology, Genetics, Biochemistry, or a related field..
- Minimum of 2+ years of relevant post-doctoral or industry experience focused on gene editing techniques, specifically CRISPR technology. Experience in Base Editors and human T cells is desired..
- Deep expertise in mammalian cell culture techniques, including transfection and viral transduction..
- Proficiency in molecular biology techniques, including DNA/RNA isolation, PCR/qPCR, cloning, and gel electrophoresis..
- Demonstrated experience with assays used to quantify gene editing outcomes (e.g., T7 Endonuclease I assay, NGS library preparation and analysis)..
- Excellent written and verbal communication skills with the ability to present complex data effectively..
- Preferred.
- Industry experience in a Biotech or Pharmaceutical setting..
- Experience with non-Cas9 CRISPR systems (e.g., Base/Prime Editors, dCas9 fusions) is a strong plus..
- Familiarity with in vivo delivery methods and animal models..
- Experience with high-throughput screening and automation..
- Experience with CAR-T cell development.
- Experience with antiviral therapeutics..
- What We Offer.
- Competitive compensation and equity package in an early-stage, high-growth startup..
- The opportunity to make a significant impact on developing next-generation therapies..
- A collaborative, fast-paced, and intellectually stimulating culture..
- To Apply, please submit your CV and a cover letter detailing your relevant experience to [email protected] or Application Link: https://forms.gle/Ewgtmcgwuv6B5KJ66..
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
4 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Statistics, Python, SQL
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Collaborate with cross-functional teams to identify and prioritize business opportunities that can be addressed through data-driven solutions.
- Extract insights from large and complex datasets using a variety of tools and techniques.
- Develop and deploy predictive models and algorithms using statistical AI/machine learning, deep learning and generative AI modeling.
- Present findings and recommendations to stakeholders in a clear and compelling manner.
- Implement data-driven solutions in various environments, including integration with existing systems and processes.
- Stay up to date on the latest development in data science and bring new idea and technology to the team.
- Monitor the performance of deployed models together with algorithms and continuously improve model accuracy over time.
- Bachelor s or Master s degree in data science, Computer Science, Statistics, or related field.
- 4+ years of experience as a Data Scientist, with a focus on industries.
- Descriptive Analytics.
- Predictive & Prescriptive Analytics (Machine learning, Forecasting, Optimization, choosing the best path).
- Strong programming skills in Python and SQL along with libraries and frameworks for machine learning and statistical test, and their variation among databases.
- Experience with statistical and machine learning techniques.
- Proficiency in optimizing large, complicated SQL statements and code versioning tools such as Git, Mercurial, SVN or others.
- Experience with data visualization tools such as Looker Studio, Tableau, and Power BI.
- Strong problem-solving and communication skills.
- Experience with Cloud technology and databases (Cloud AWS, Azure, GCP).
- Extensive knowledge of Customer relationship management, Customer experience, Next best action, Credit scoring, and Insight & pattern discovery.
- Location: True Digital Park, Bangkok.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
2 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Research, Python, SQL
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Develop machine learning models such as credit model, income estimation model and fraud model.
- Research on cutting-edge technology to enhance existing model performance.
- Explore and conduct feature engineering on existing data set (telco data, retail store data, loan approval data).
- Develop sentimental analysis model in order to support collection strategy.
- Bachelor Degree in Computer Science, Operations Research, Engineering, or related quantitative discipline.
- 2-5 years of experiences in programming languages such as Python, SQL or Scala.
- 5+ years of hands-on experience in building & implementing AI/ML solutions for senior role.
- Experience with python libraries - Numpy, scikit-learn, OpenCV, Tensorflow, Pytorch, Flask, Django.
- Experience with source version control (Git, Bitbucket).
- Proven knowledge on Rest API, Docker, Google Big Query, VScode.
- Strong analytical skills and data-driven thinking.
- Strong understanding of quantitative analysis methods in relation to financial institutions.
- Ability to clearly communicate modeling results to a wide range of audiences.
- Nice to have.
- Experience in image processing or natural language processing (NLP).
- Solid understanding in collection model.
- Familiar with MLOps concepts.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
4 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Data Analysis, Business Development, Problem Solving
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Assist in driving strategic initiatives across functional teams to achieve business impact in growth, profitability, and efficiency.
- Monitor and push for correct, timely implementation of initiatives for a cluster. Be the first contact point for categories and other teams to solve issues and provide support.
- Work closely with category managers to identify gap and opportunities to push for KPI.
- Support data analysis and take a hypothesis-driven approach to address business challenges, identify new growth opportunities.
- Requirements: Bachelor s or Master s Degree in business or related fields.
- Ideally 2-4 years of working experience preferably in business development.
- People management skills.
- Logical thinking and strong problem solving skills.
- Experience in E-commerce is a plus.
- Result oriented, self-driven, and strong negotiation skills.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
1 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Big Data, SQL, Tableau, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Be responsible for modeling and discovering business insight, including develop the Business Intelligence Report to deliver to Business Users.
- Using the data to analyze trends and solving problems from various sources by using statistical methods to analyze data and generate useful business reports.
- Working with data user for implementing and developing the data analyze to actionable insight.
- Gathering, understanding, and analyzing detailed of business requirements by using appropriate tools and techniques.
- Creating, monitoring, and reviewing the data dashboard/report.
- Designing and reviewing the test cases including the campaign designs.
- Bachelor s degree in Computer Science, Applied Statistics, Applied Mathematics, Information Technology, Business Computer or any related field.
- At least 1 year of experience with Data Analysis role.
- Understanding of data analysis, big data, and SQL.
- Experience using business intelligence tools or data visualization tools (i.e., Tableau).
- Able to analyze trends and patterns for solving problems of business insight in big data by working with business user and data scientist/data engineer.
- Excellent in Microsoft Excel (i.e., Pivot table, VLOOKUP) and Power Point.
- Having a business mind and detail oriented.
- Thai Native with good command in English.
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Partner with business teams to analyze requirements and identify data sources needed for.
- analytics/reporting applications with medium level complexity.Conduct full data lifecycle analysis to develop new insights for analytics and reporting.
- dashboardsProvide recommendations to address data quality issues with source systems.
- Communicate approaches with cross functional teams.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
5 āļāļĩāļāļķāđāļāđāļ
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Responsible for the on-site management of contractors, sub-contractors and vendors, ensuring that all work performed is in accordance with established practices, procedures & local legislation.
- Performance and oversight of maintenance and operations on all electrical, mechanical, and fire/life safety equipment within the data center.
- Assist in troubleshooting of facility and rack-level events within internal Service Level Agreements (SLA).
- Perform rack installs, rack decommissioning, and facility management.
- Provide operational readings and key performance indicators to make sure uptime is maintained.
- About AWS
- Diverse Experiences
- AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn t followed a traditional path, or includes alternative experiences, don t let it stop you from applying.
- Why AWS?
- Amazon Web Services (AWS) is the world s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating that s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.
- Inclusive Team Culture
- AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do.
- Mentorship & Career Growth
- We re continuously raising our performance bar as we strive to become Earth s Best Employer. That s why you ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
- Work/Life Balance
- We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there s nothing we can t achieve in the cloud.
- BASIC QUALIFICATIONS.
- Technical College Degree or Qualified Technical Diploma.
- Experience in mission critical environment with 5+ years of relevant work experience.
- An excellent understanding of the electrical and mechanical systems used in a data center, manufacturing or semiconductor environment, including but not limited to DRUPS, Transformers, Generators, Switchgear, UPS systems, ATS/STS units, PDUs, Chillers, AHUs and CRAC units.
- PREFERRED QUALIFICATIONS.
- Experience in management of vendors/contractors performing construction, maintenance and upgrading works in large-scale critical environment.
- Proficient in technical verbal and written communication skills.
- Data Center or facility experience is a plus advantage.
- Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you re applying in isn t listed, please contact your Recruiting Partner.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
5 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Procurement
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Bachelor's Degree or equivalent practical experience.
- 5 years of experience in bidding, designing, operating, and commissioning of electrical systems.
- Experience with mission critical facility s electrical infrastructure systems.
- Knowledge of electrical systems commissioning.
- Knowledge of mechanical and control systems.
- Ability to travel internationally up to 25% of the time needed.
- Our thirst for technology is a part of everything we do. The Data Center Engineering team takes the physical design of our data centers into the future. Our lab mirrors a research and development department - cutting-edge strategies are born, tested and tested again. Along with a team of great minds, you take on complex topics like how we use power or how to run state-of-the-art, environmentally-friendly facilities. You're a visionary who optimizes for efficiencies and never stops seeking improvements - even small changes that can make a huge impact. You generate ideas, communicate recommendations to senior-level executives and drive implementation alongside facilities technicians.
- With your technical expertise, you ensure compliance with codes and standards, develop infrastructure improvements and serve as an expert in your specialty (e.g., cooling, electrical).
- As a Data Center Electrical Engineer, you will be involved in program level engineering projects and the modification of existing infrastructures. You will provide and prepare all types of documents including engineering reports, design documents, Total Cost of Ownership (TCO) analysis, drawing markup, budget, schedule, and more.
- In this role, you will also take project execution level responsibility in ensuring our facilities build execution meets project specific goals on safety, quality, schedule, and cost. You will provide guidance and leadership to all stakeholders involved in the project (e.g., AE, GC, S/C on mechanical discipline related issue to the resolutions).Behind everything our users see online is the architecture built by the Technical Infrastructure team to keep it running. From developing and maintaining our data centers to building the next generation of Google platforms, we make Google's product portfolio possible. We're proud to be our engineers' engineers and love voiding warranties by taking things apart so we can rebuild them. We keep our networks up and running, ensuring our users have the best and fastest experience possible.
- Collaborate with the core team to understand, develop and update the data center mechanical designs, starting from Basis of Design (BOD) to Issue for Constructions (IFC) documents, for data center project build-outs and major infrastructure upgrades to all levels of testing and commissioning works.
- Manage mechanical (power supply, monitoring, and control), support procurement in Statement of Work (SOW) preparation, bid technical clarification, be accountable for key mechanical equipment manufacturing monitoring, and deliver and install on site. Identify and resolve issues raised by the cross-functional teams.
- Update and maintain the internal design specifications, drawings, and standards in accordance with the latest configurations.
- Provide and prepare documents including statement of work, engineering reports, design documents, total cost of ownership analysis, drawing markup, budget, schedule, commissioning documents.
- Develop next generation mechanical system products to meet company long-term strategies.
- Google is proud to be an equal opportunity workplace and is an affirmative action employer. We are committed to equal employment opportunity regardless of race, color, ancestry, religion, sex, national origin, sexual orientation, age, citizenship, marital status, disability, gender identity or Veteran status. We also consider qualified applicants regardless of criminal histories, consistent with legal requirements. See also Google's EEO Policy and EEO is the Law. If you have a disability or special need that requires accommodation, please let us know by completing our Accommodations for Applicants form.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
5 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
SQL, DevOps, Automation, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Design, develop, and optimize ETL processes using Databricks to support large-scale data processing and analytics.
- Build and maintain batch and stream ETL/ELT workflows for structured and semi-structured data using data bricks and Azure Services.
- Establish integration between prem platform and azure storage to establish the incremental copy.
- Develop efficient, reusable, and version-controlled Databricks notebooks and workflows.
- Implement data transformation, cleansing, and validation logic to ensure data accuracy.
- Design and manage curated data layers supporting reporting and advanced analytics.
- Establish data quality, lineage, and governance practices across the Databricks platform.
- Collaborate with data analysts, BI developers, and data scientists to deliver analytical datasets.
- Leverage SQL/Spark for data extraction, transformation, and analysis.
- Apply strong problem-solving and debugging skills to identify and resolve issues in data pipelines and workflows.
- Migrate the reports from Traditional database to Databricks environment with optimized schema and schema structures and validate the data.
- Collaborate with cross-functional teams to ensure data integrity, performance optimization, and alignment with business objectives.
- Implement DevOps practices such as CI/CD automation and version control to streamline deployment and management of Databricks workflows.
- Your role as a leader: At Deloitte, we believe in the importance of empowering our people to be leaders at all levels. We connect our purpose and shared values to identify issues as well as to make an impact that matters to our clients, people and the communities. Additionally, Associates / Analysts / Consultants across our Firm are expected to:Demonstrate a strong commitment to personal learning and development.
- Understand how our daily work contributes to the priorities of the team and business.
- Understand the set expectations and demonstrate accountability in keeping personal performance on track.
- Actively focus on developing effective communications and relationship-building skills with stakeholders, clients and team.
- Demonstrate an appreciation for working with others.
- Understand what is fundamental to Deloitte s success as a business.
- Demonstrate integrity and an awareness of strengths, differences, and personal impact.
- Develop their understanding of Deloitte and offer a fresh perspective.
- Requirements:Minimum 5 - 10 years of experience.
- Possess 5 years in solution, architecting, design and development experience in enterprise/ architecture projects.
- Experienced in managing full development lifecycle phases, designing enterprise software and defining solution architectures and technology.
- Applying design concepts - Service oriented architecture, layered architectures, components, interfaces, messaging and patterns.
- Application integration service support components.
- Designing and integrating applications and SaaS solutions using technology stacks and cloud service providers, such as Microsoft (e.g. Azure, power BI,Tableau),.
- BI service support components (e.g. Data warehouse, extract-transform-load processes, databases).
- Azure Data Factory, Azure Databricks, Hadoop Exposure.
- E2E integration experience (Hybrid cloud model).
- Strong verbal and written communication, presentation and collaboration skills. Good relationship building skills are necessary, including the ability to build a rapport and communicate effectively with all levels of the customer.
- Good command over verbal and written English.
- work closely with application development and testing teams to support Data ETL build and supports project activities especially on Data and ETL platforms.
- Release Management (strong in GIT) and Azure Control M.
- Good to Have:Continued learning certifications, at least one of the following: AWS Certified Solutions Architect, Google Cloud Certified Architect, Microsoft Azure Solutions Architect,.
- Cloud [Software] Systems Engineer, Customer Solutions Engineer [Cloud / Data, Analytics/AI] or combination of experience as DevOps Engineer, Data Architect, Cloud/SaaS Software Developer.
- Due to volume of applications, we regret that only shortlisted candidates will be notified.
- Please note that Deloitte will never reach out to you directly via messaging platforms to offer you employment opportunities or request for money or your personal information. Kindly apply for roles that you are interested in via this official Deloitte website.
- Requisition ID: 111754In Thailand, the services are provided by Deloitte Touche Tohmatsu Jaiyos Co., Ltd. and other related entities in Thailand ("Deloitte in Thailand"), which are affiliates of Deloitte Southeast Asia Ltd. Deloitte Southeast Asia Ltd is a member firm of Deloitte Touche Tohmatsu Limited. Deloitte in Thailand, which is within the Deloitte Network, is the entity that is providing this Website.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
7 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Software Development, Excel, Salesforce, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Software Solutions.
- Software development frameworks and methodologies.
- Flexible and adaptive, multi-national environment.
- We're looking for an experienced IT Project Manager to work in our newly established software-related solution team which focus on developing software for enterprises.
- What we want?.
- If you have passion in software development and are delighted to see the work of your team being deployed in real use country-wide, this position is right for you!.
- To excel your work in this position, you should have background growth path as a developer, system analyst, and project manager in enterprise project environments.
- The right candidate should be flexible and adaptive as the solutions and technologies to be used may vary and cover a wide range of development nature including building up from scratch, add-on functionalities on top of foundation products (e.g. Salesforce), and also customization.
- Your responsibility will include applying effective strategy for the projects, planning for software life cycle and activities, tracking and monitoring process, controlling cost and quality, and problem solving or escalating project issues.
- You will be the focal point of contact in the project and use your communication skills to manage expectation and relationship with customers and team members.
- Note that you will possibly work in multi-national project environments so you should feel comfortable in English communication.
- Who are we looking for?.
- 7+ years of experience in software development.
- Knowledgeable in software development framework and methodologies such as RAD, agile, scrum, etc. Real-use experience will be specially considered.
- Experienced in managing software development team with good leadership.
- Possess strong verbal and written communication skills.
- Proficiency in English.
- Having know-how of software quality management.
- Outgoing personality and problem solver.
- Knowledge in AI and the ability to use AI-related tools and technologies.
- MFEC OKR:- As MFEC People, you will be a part of our talent team. Besides your main responsibilities, you do have special projects as part of OKR. However, the percentages will be different according to the positions and teams.
- Location: Head Office: Chatuchak, SJ Infinite One Business Complex
āļāļąāļāļĐāļ°:
Data Analysis, Automation
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Lead strategic projects focused on maximizing productivity and optimizing Customer Service operations, ensuring timely delivery and measurable business outcomes.
- Conduct end-to-end data analysis and deep-dive root cause analysis (RCA) on core CS metrics to identify friction points and deliver actionable, data-driven insights to management.
- Create, maintain, and optimize reporting infrastructure (dashboards and recurring reports) using BI tools to answer key business questions and monitor operational healt ...
- Drive efficiency improvements and support AI/automation initiatives by providing data groundwork, analysis, and validation required for implementation and tracking ROI.
- Serve as the primary Data Liaison between the Customer Service Operations team and the Business Intelligence (BI)/Data Engineering teams, translating challenges into precise data requirements.
- Communicate complex analytical findings and strategic recommendations to senior management and cross-functional stakeholders in a clear, concise, and logical manner.
- Requirements: Bachelor's Degree in any related field.
- Strong understanding of statistical concepts (e.g., hypothesis testing, correlation, regression) to identify trends, measure the impact of initiatives, and conduct root cause analysis.
- Proficiency in Microsoft Excel/Google Sheets and BI tools for data cleaning, ad-hoc analysis, and design, build, and maintain actionable dashboards and reports.
- Strong interpersonal skills for collaborating with other teams (BI, Marketing, Product) and managing expectations while driving consensus.
- Ability to own and drive initiatives to measurable completion, delivering productivity improvements as outlined in the overview.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
2 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
Data Analysis, Python, SQL, English
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Design, develop, and maintain scalable and efficient ETL/ELT data pipelines.
- Collaborate with BI teams, Data Scientists, and business units to deliver data solutions.
- Manage and optimize workflows using tools like Apache Airflow or Azure Data Factory.
- Integrate data from various sources into centralized data lakes or data warehouses.
- Troubleshoot and resolve issues in data pipeline jobs and scheduled workflows.
- Support cloud-based data architecture and ensure performance, security, and availability.
- Bachelor s Degree in Computer Engineering, Software Engineering, Information Technology, Data Engineering or any relevant field.
- 2 - 4 years of experience as a Data Engineer or in a related data role.
- Proficient in SQL and programming languages such as Python (including Pyspark or SparkSQL).
- Experience with ETL tools such as Apache Airflow or Azure Data Factory.
- Familiar with BI tools like Power BI or Tableau.
- Experience working with cloud platforms such as Azure, AWS, or GCP.
- Strong analytical and problem-solving skills, with a collaborative mindset.
- Fluent in Thai with good documentation skill in English.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđ:
3 āļāļĩāļāļķāđāļāđāļ
āļāļąāļāļĐāļ°:
System Testing, Hadoop, MongoDB
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Responsible for design, implement and support our software applications..
- Perform software and database designs, and cooperate with testing team for the system testing..
- Work closely with technical project leader to apply the experience as well as knowledge to convert the project requirement specification into project functional specification as the project s objectives..
- Get involved in the software configuration management and software applications maintenance and take part in technology solutions decisions.
- Job Qualifications.
- Bachelor s in Computer Science, Computer Engineering or other IT-related field.
- Minimum 3 years experience in software and *database designs.
- Excellent knowledge of Hadoop, MongoDB, Elastic.
- Knowledge in Oracle and SQL Server..
- Excellent knowledge of Oracle PL/SQL programming.
- Able to design database for a large and complex system.
- Work in a variety of settings to build systems that collect, manage, and convert raw data into usable information for data scientists and business analysts to interpret..
- Knowledge in Performance Tuning.
- Additional knowledge/skills in one or more of the following areas will be considered: Linux Red Hat and Windows operating system skills; Web-based technologies..
- āļāļĢāļ°āļāļąāļāļŠāļļāļāļ āļēāļ.
- āļāļĢāļ°āļāļąāļāļŠāļąāļāļāļĄ.
- āļāļāļāļāļļāļāļŠāļģāļĢāļāļāđāļĨāļĩāđāļĒāļāļāļĩāļ.
- āđāļĒāļĩāđāļĒāļĄāđāļāđ āđāļĒāļĩāđāļĒāļĄāļāļĨāļāļ.
- āļāļāļāļāļ§āļąāļāļ§āļąāļāđāļāļīāļāļāļāļąāļāļāļēāļ.
- āļāļĢāļ§āļāļŠāļļāļāļ āļēāļāļāļĢāļ°āļāļģāļāļĩ.
- āđāļāļīāļāļāđāļ§āļĒāđāļŦāļĨāļ·āļāļāļēāļāļĄāļāļāļĨāļŠāļĄāļĢāļŠ.
- āđāļāļīāļāļāđāļ§āļĒāđāļŦāļĨāļ·āļāļāļēāļāļĻāļ.
- āļāļēāļĢāļāļķāļāļāļāļĢāļĄāđāļĨāļ°āļāļąāļāļāļēāļāļāļąāļāļāļēāļ.
- āļāđāļēāļāļāļāđāļāļāļāļīāđāļĻāļĐ.
- āđāļāļāļąāļŠāļāļēāļĄāļāļĨāļāļēāļ / āļāļĨāļāļĢāļ°āļāļāļāļāļēāļĢ.
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Oversee all aspects of the data center's critical physical infrastructure. Ensure that all work performed within the space is done to high quality and without impact to internal/external customers.
- Manage teams of 24x7 engineering technicians to support and operate data center facilities.
- Engage in improvement projects, often requiring reaching out to a variety of support teams, and drive them from conception to completion.
- Coordinates daily with a multitude of third party vendors ensuring adherence to contracted SLAs.
- Effectively and efficiently manage the operations budget and expenditures.
- Routinely operate as the afterhours on-call Data Center Facility Manager for the data centers in the region. This will include responding to any issues within the data centers and managing the investigation, mitigation, and recovery of the issue(s).
- BASIC QUALIFICATIONS.
- Experience in facilities and/or construction management, demonstrating progressive responsibility and growth within the facilities/construction industry.
- Have strong facilities management experience.
- Ability to conduct financial business case analysis / translate information into useful formats and draw conclusions.
- Experience building and manage budgets.
- Familiarity with business process documentation and improvement.
- Ability to lead negotiations, and manage high level meetings and discussions.
- Proven track record of taking ownership and successfully delivering results in a fast-paced, dynamic environment.
- Excellent listening, verbal, written, and skills.
- PREFERRED QUALIFICATIONS.
- Strong verbal and written communication skills.
- Strong organizational skills.
- High attention to detail including precise and effective customer communications and proven ability to manage multiple, competing priorities simultaneously.
- Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you re applying in isn t listed, please contact your Recruiting Partner.
āļāļąāļāļĐāļ°:
Compliance, Statistics, Research
āļāļĢāļ°āđāļ āļāļāļēāļ:
āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļīāļāđāļāļ·āļāļ:
āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
- Develop standards, practices, and requirement for digital signature, content and data management as well as ensure consistent compliance of all implementations.
- Develop existing and future requirement for use of digital signature, content and data management system to meet data need to serve company strategy and external trends.
- Develop a strategic and tactical plan in alignment with current and future business requirement on data management.
- Identify the key data required to run the projects as well as define key issues and recommendations to solve the problems.
- Facilitate data council to provide guidelines and recommendation on business requirements, practice, and compliance.
- Communicate standards and practices regarding data management to relevant stakeholders, and monitor all implementation to ensure efficiency.
- Define, manage, and update overall data catalog as well as collate data definition, sources, and owners for key data required for the business.
- Provide information to business users as required.
- Professional Knowledge & Experiences.
- Bachelor s Degree in computer science, statistics, or operations research or related technical discipline.
- 10 years or more experience in Data Governance.
- Experience in working with digital signature, content and data management related to data architecture, integration, classification, strategy, quality management, security and privacy standards.
- Understand industry processes and uses of data throughout the lifecycle in the functions/data domains.
- Knowledge of industry and ability to translate business needs into data.
- Additional Desirable Qualification.
- CORE Competencies.
- 1
- 2
- 3
āļĒāļāļāļāļīāļĒāļĄ
āļĨāļāļāļāļģ 5 āļŠāļīāđāļāļāļĩāđāļŦāļĨāļąāļāđāļĨāļīāļāļāļēāļ āļāļĩāļ§āļīāļāļāļļāļāļāļ°āđāļāļĨāļĩāđāļĒāļāđāļāļāļĨāļāļāļāļēāļĨ
āļāļģāđāļāļ°āļāļģāļāđāļēāļāļāļēāļāļĩāļāļāļĢāļīāļĐāļąāļ 7 āđāļāļāļāļĩāđāļāļļāļāđāļĄāđāļāļ§āļĢāļāļģāļāļēāļāļāđāļ§āļĒ
āļāļģāđāļāļ°āļāļģāļāļēāļĢāļŦāļēāļāļēāļāđāļāļīāļāđāļāļĨāļŠāļļāļāļĒāļāļ 50 āļāļĢāļīāļĐāļąāļāļāļĩāđāļāļāļĢāļļāđāļāđāļŦāļĄāđāļāļĒāļēāļāļĢāđāļ§āļĄāļāļēāļāļāđāļ§āļĒāļĄāļēāļāļāļĩāđāļŠāļļāļ 2025
āļāđāļēāļ§āļŠāļēāļĢāđāļŦāļĄāđāđ
