āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

Key Responsibilities:

  • DataOps, MLOps, and AIOps
    • Design, build, and optimize scalable, secure, and efficient data pipelines for AI/ML workflows.
    • Automate data ingestion, transformation, and deployment across AWS, GCP, and Azure.
    • Implement MLOps and AIOps for model versioning, monitoring, and automated retraining.
    • Ensure performance, security, scalability, and cost efficiency in AI lifecycle management.
  • Performance Optimization & Security
    • Monitor, troubleshoot, and optimize AI/ML pipelines and data workflows to enhance reliability.
    • Implement data governance policies, security best practices, and compliance standards.
    • Collaborate with cybersecurity teams to address vulnerabilities and ensure data protection.
  • Data Engineering & System Integration
    • Develop and manage real-time and batch data pipelines to support AI-driven applications.
    • Enable seamless integration of AI/ML solutions with enterprise systems, APIs, and external platforms.
    • Ensure data consistency, quality, and lineage tracking across the AI/ML ecosystem.
  • AI/ML Model Deployment & Optimization
    • Deploy and manage AI/ML models in production, ensuring accuracy, scalability, and efficiency.
    • Automate model retraining, performance monitoring, and drift detection for continuous improvement.
    • Optimize AI workloads for resource efficiency and cost-effectiveness on cloud platforms.
  • Continuous Learning & Innovation
    • Stay updated on AI/ML advancements, cloud technologies, and big data innovations.
    • Contribute to proof-of-concept projects, AI process improvements, and best practices.
    • Participate in internal research, knowledge-sharing, and AI governance discussions.
  • Cross-Functional Collaboration & Business Understanding
    • Work with business teams to ensure AI models align with organizational objectives.
    • Gain a basic understanding of how AI/ML supports predictive analytics, demand forecasting, automation, personalization, and content generation.

Qualifications:

  • Education:
    Bachelor’s degree in Computer Science, Data Engineering, Information Technology, or a related field. Advanced degrees or relevant certifications (e.g., AWS Certified Data Analytics, Google Professional Data Engineer, Azure Data Engineer) are a plus.
  • Experience:
    • Minimum of 3-5 years’ experience in a data engineering or operations role, with a focus on DataOps, MLOps, or AIOps.
    • Proven experience managing cloud platforms (AWS, GCP, and/or Azure) in a production environment.
    • Hands-on experience with designing, operating, and optimizing data pipelines and AI/ML workflows.
  • Technical Skills:
    • Proficiency in scripting languages such as Python and Bash, along with experience using automation tools.
    • Familiarity with containerization and orchestration technologies (e.g., Docker, Kubernetes) is desirable.
    • Strong knowledge of data processing frameworks (e.g., Apache Spark) and data pipeline automation tools.
    • Expertise in data warehouse solutions and emerging data lakehouse architectures.
    • Experience with AWS technologies is a plus, especially AWS Redshift and AWS SageMaker, as well as similar tools on other cloud platforms.
    • Understanding of machine learning model deployment and monitoring tools
āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:500-1000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļŠāļīāļ™āļ„āđ‰āļēāļ­āļļāļ›āđ‚āļ āļ„āļšāļĢāļīāđ‚āļ āļ„
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.osotspa.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1891
āļ„āļ°āđāļ™āļ™:4.5/5

āļšāļĢāļīāļĐāļąāļ— āļ­āđ‚āļŠāļ—āļŠāļ›āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļāđˆāļ­āļ•āļąāđ‰āļ‡āļ‚āļķāđ‰āļ™āđƒāļ™āļ›āļĩ āļž.āļĻ. 2434 āđāļĨāļ°āđ€āļ›āđ‡āļ™āļšāļĢāļīāļĐāļąāļ—āļœāļđāđ‰āļœāļĨāļīāļ•āļŠāļīāļ™āļ„āđ‰āļēāļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āļŠāļąāđ‰āļ™āļ™āļģāļ‚āļ­āļ‡āđ„āļ—āļĒāļ—āļĩāđˆāļĄāļĩāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļĒāļēāļ§āļ™āļēāļ™āļāļ§āđˆāļē 130 āļ›āļĩāđƒāļ™āļ”āđ‰āļēāļ™āļāļēāļĢāļœāļĨāļīāļ•āļŠāļīāļ™āļ„āđ‰āļēāļ­āļļāļ›āđ‚āļ āļ„āļšāļĢāļīāđ‚āļ āļ„āļŦāļĨāļēāļāļŦāļĨāļēāļĒāļ›āļĢāļ°āđ€āļ āļ— āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļ”āļ·āđˆāļĄāđ„āļĄāđˆāļĄāļĩāđāļ­āļĨāļāļ­āļŪāļ­āļĨāđŒ āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ”āļđāđāļĨāļŠāļļāļ‚āļ āļēāļžāđāļĨāļ°āļ„āļ§āļēāļĄāļ‡āļēāļĄ āđāļĨāļ°āļ‚āļ™āļĄāļ‚āļšāđ€āļ„āļĩāđ‰āļĒāļ§ āļĄāļĩāļˆāļģāļŦāļ™āđˆāļēāļĒāđƒāļ™ 39 āļ› ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

At Osotspa, we offer a dynamic environment where innovation and passion come together. Joining our team provides you with the opportunity to contribute to a global leader in consumer goods. We offer a collaborative work culture that values personal and professional growth. We bel ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āđ€āļ‚āļ•āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™: āļšāļēāļ‡āļāļ°āļ›āļī
āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: 348 Ramkhamhaeng Rd., Huamak, Bangkapi, Bangkok 10240 Thailand.
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļāļ­āļ‡āļ—āļļāļ™āļŠāļģāļĢāļ­āļ‡āđ€āļĨāļĩāđ‰āļĒāļ‡āļŠāļĩāļž
  • āļŠāđˆāļ§āļ™āļĨāļ”āļžāļ™āļąāļāļ‡āļēāļ™
  • āđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļžāļąāļ’āļ™āļē

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āđ‚āļ­āļŠāļ–āļŠāļ āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āđ‚āļ­āļŠāļ–āļŠāļ āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āđ‚āļ­āļŠāļ–āļŠāļ āļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļ­āļēāļŠāļĩāļŸāļēāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļˆāļĢāļīāļāđ‚āļ āļ„āļ āļąāļ“āļ‘āđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ­āļŠāļˆāļĩāđ€āļ­āļŸ āđ€āļ‹āļ­āļĢāđŒāļ§āļīāļŠāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļĨāļ­ āđāļšāļ‡āļ„āđ‡āļ­āļ