āļāļĢāļ°āļāļēāļĻāļāļēāļāļāļĩāđāļŦāļĄāļāļāļēāļĒāļļāđāļĨāđāļ§
Roles and Responsibilities :
- Data Pipeline Development: Create and maintain optimal data pipeline architecture.
- Data Integration: Assemble large, complex data sets that meet functional and non-functional business requirements.
- Process Improvement: Identify, design, and implement internal process improvements, such as automating manual processes and optimizing data delivery.
- Infrastructure Building: Build the infrastructure required for optimal extraction, transformation, and loading (ETL) of data from various data sources using SQL and AWS technologies.
- Master Data Management (MDM): Implement and manage MDM solutions to ensure data consistency, accuracy, and reliability across the organization.
- Data Lake Management: Design, build, and maintain data lakes to store structured and unstructured data, enabling advanced analytics and machine learning.
- Collaboration: Work with stakeholders including data, design, product, and executive teams to assist with data-related technical issues and support their data infrastructure needs.
- Data Analysis Tools: Build analytical tools to utilize the data pipeline, providing actionable insights into key business performance metrics.
Qualifications :
Technical Skills : Proficiency in SQL, Python, big data technologies such as Hadoop, Spark, and AWS, as well as MDM tools and data lake technologies.
Technical Skills : Platforms , Databases , Programming Languages , Software Appliance : âĒ Oracle: Data Integrator, Golden Gate âĒ Informatica: Data Quality, Data Governance, Dynamic Data Masking, Big Data Management, Enterprise Data Catalog, Intelligent Data Management Cloud, Informatica Master Data Management
Analytical Skills : Strong analytical skills with the ability to collect, organize, analyze, and disseminate significant amounts of information.
Experience : Prior experience in data engineering or a related field, with a solid understanding of data architecture, data modeling, MDM, and data lakes.
- Solution Advisor for Analytics, Cloud, Big Data, and Data Governance
- Architect MDM solutions, including data modeling, match and merge rule configuration, hierarchy management, and data governance frameworks.
- Designed and implemented ETL processes for integrating MDM solutions with various ERP and CRM systems.
- Perform data quality assessments, cleansing, and validation tasks to maintain data accuracy and reliability.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļĩāđāļāļģāđāļāđāļ
- āđāļĄāđāļĢāļ°āļāļļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļąāđāļāļāđāļģ
āđāļāļīāļāđāļāļ·āļāļ
- āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
āļŠāļēāļĒāļāļēāļ
- āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
āļāļĢāļ°āđāļ āļāļāļēāļ
- āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļĩāđāļĒāļ§āļāļąāļāļāļĢāļīāļĐāļąāļ
āđāļĄāļ·āđāļ 20 āļāļ§āđāļēāļāļĩāļāđāļāļ āđāļāļ§āļąāļāļāļĩāđ 21 āļĄāļĩāļāļēāļāļĄ 2531 āļāļĢāļīāļĐāļąāļ āļ āļēāļāđāļāđāđāļāļ·āđāļāđāļāļĨāļīāļ āļāļģāļāļąāļ āđāļāđāļāđāļāļāļąāđāļāļāļķāđāļāļāļāļāļ§āļēāļĄāļāļąāđāļāđāļ āļāļĢāļ°āļāļāļāļāļīāļāļāļēāļĢāļāļĨāļąāļāļāđāļģāļĄāļąāļ āđāļĨāļ°āļāđāļēāļāđāļģāļĄāļąāļāđāļāļ·āđāļāđāļāļĨāļīāļāđāļŦāđāļāļąāļāļāļļāļĄāļāļ āļāļđāđāļāļĢāļ°āļāļāļāļāļēāļĢāļāļĢāļ°āļĄāļāđāļĨāļ°āđāļĢāļāļāļēāļāļāļļāļāļŠāļēāļŦāļāļĢāļĢāļĄ āđāļĢāļīāđāļĄāļāđāļāļāļēāļāļ āļēāļāđāļāđāļāļāļāļāļĢāļ°āđāļāļĻāđāļāļĒ āļāļēāļāļāļĢāļīāļĐāļąāļ āļ āļēāļāđāļāđāđāļāļ·āđāļāđāļāļĨāļīāļ āļāļģāļāļąāļ āđāļāđāļāļāļāļ°āđāļāļĩāļĒāļāđāļāļĨāļĩāđāļĒāļāļŠāļđāđ āļāļĢāļīāļĐāļąāļ āļ ...
āļĢāđāļ§āļĄāļāļēāļāļāļąāļāđāļĢāļē: Joining PTG means becoming part of a dynamic and innovative company that is committed to sustainable growth and customer satisfaction. With over 30 years of experience, PTG offers a collaborative work environment that encourages personal and professional development.
āļŠāļ§āļąāļŠāļāļīāļāļēāļĢ
- āļāļēāļĢāļāļąāļāļāļēāđāļāļ·āđāļāļāļ§āļēāļĄāđāļāđāļāļĄāļ·āļāļāļēāļāļĩāļ
- āļāđāļēāđāļāļīāļāļāļēāļ
- āļāļģāļāļēāļāļāļāļāļŠāļāļēāļāļāļĩāđ
- āļāļĢāļ°āļāļąāļāļāļĩāļ§āļīāļ
- āļāļĢāļ°āļāļąāļāļŠāļąāļāļāļĄ
- āļāļĢāļ°āļāļąāļāļŠāļļāļāļ āļēāļ
- āļāļķāļāļāļāļĢāļĄ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļēāļ
- āļāļĢāļ°āļāļąāļāļāļļāļāļąāļāļīāđāļŦāļāļļ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļĢāļ°āļāļāļāļāļēāļĢ
- āđāļāļĢāļ·āđāļāļāđāļāļāļāļāļąāļāļāļēāļ
- āđāļāļĢāļāļāļēāļĢāļŠāđāļāđāļŠāļĢāļīāļĄāļāļļāļāļ āļēāļāļāļĩāļ§āļīāļ
- āļŠāđāļ§āļāļĨāļāļāļāļąāļāļāļēāļ
- āļŠāļĄāļēāļāļīāļāļāļīāļāđāļāļŠ
- āđāļāļāļēāļŠāđāļāļāļēāļĢāđāļĢāļĩāļĒāļāļĢāļđāđāđāļĨāļ°āļāļąāļāļāļē
- āļāđāļēāļĒāļāđāļēāļāļģāļāļēāļāļĨāđāļ§āļāđāļ§āļĨāļē
- āļāļāļāļāļļāļāļŠāļģāļĢāļāļāđāļĨāļĩāđāļĒāļāļāļĩāļ

