āļāļĢāļ°āļāļēāļĻāļāļēāļāļāļĩāđāļŦāļĄāļāļāļēāļĒāļļāđāļĨāđāļ§
Responsibilities
- Data Pipeline Development: Design, implement, and maintain data analytics pipelines and processing systems.
- Data Modeling: Apply data modeling techniques and integration patterns to ensure data consistency and reliability.
- Data Transformation: Write data transformation jobs through code to optimize data processing.
- Data Management: Perform data management through data quality tests, monitoring, cataloging, and governance.
- LLM Integration: Design and integrate LLMs into existing applications, ensuring smooth functionality and performance.
- Model Development and Fine-Tuning: Develop and fine-tune LLMs to meet specific business needs, optimizing for accuracy and efficiency.
- Performance Optimization: Continuously optimize LLM performance for speed, scalability, and reliability.
- Infrastructure Knowledge: Possess knowledge of the data and AI infrastructure ecosystem.
- Collaboration: Collaborate with cross-functional teams to identify opportunities to leverage data to drive business outcomes.
- Continuous Learning: Demonstrate a willingness to learn and find solutions to complex problems.
Qualifications
- Education: Bachelor's or Master's degree in Computer Science, AI, Engineering, or a related field.
- Experience: At least 2 years of experience in data engineering and at least 3 years as data scientist.
- Technical Skills: Proficiency in Python, SQL, Java, experience with LLM frameworks (e.g., LangChain), and familiarity with cloud computing platforms. Additional, visualization tools i.e Power BI, Tableau, Looker, Qlik
- Cloud Computing: Familiarity with cloud computing platforms, such as GCP, AWS, or Databricks.
- Problem-Solving: Strong problem-solving skills with the ability to work independently and collaboratively.
Desirable
- System Design: Knowledge of system design and platform thinking to build sustainable solutions.
- Big Data Experience: Practical experience with modern and traditional Big Data stacks (e.g., BigQuery, Spark, Databricks, duckDB, Impala, Hive).
- Data Warehouse Solutions: Experience working with data warehouse solutions, ELT tools, and techniques (e.g., Airflow, dbt, SAS, Nifi).
- API Development: Experience with API design to facilitate integration of LLMs with other systems.
- Prompt Engineering: Skills in designing sequential tasks for LLMs to achieve efficient and accurate outputs.
- Visualization Solution: Skills in design and develop dashboard for analytic & insight
- Agile Methodologies: Experience with agile software delivery and CI/CD processes.
Location: BTS Ekkamai
Working Day: Mon-Fri (WFA Every Friday)
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļĩāđāļāļģāđāļāđāļ
- āđāļĄāđāļĢāļ°āļāļļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļąāđāļāļāđāļģ
āđāļāļīāļāđāļāļ·āļāļ
- āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
āļŠāļēāļĒāļāļēāļ
- āđāļāļāļĩ / āđāļāļĩāļĒāļāđāļāļĢāđāļāļĢāļĄ
- āļāļēāļāļ§āļīāļāļąāļĒāđāļĨāļ°āļ§āļīāļāļĒāļēāļĻāļēāļŠāļāļĢāđ
āļāļĢāļ°āđāļ āļāļāļēāļ
- āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļĩāđāļĒāļ§āļāļąāļāļāļĢāļīāļĐāļąāļ
āļāļđāđāļāļģāļāļļāļāļīāļāļāđāļēāļāļĨāļĩāļ āđāļāļĢāļđāļāđāļāļāļāļāļ "āđāļŪāđāļāļāļĢāđāļĄāļēāļĢāđāđāļāđāļ" āļŦāļĢāļ·āļ "āļāļđāđāļāļāļĢāđāđāļāđāļāđāļāļāļĢāđ", āļāļļāļĢāļāļīāļāļāđāļēāļāļĨāļĩāļāļŠāļĄāļąāļĒāđāļŦāļĄāđāļāļĩāđāļĄāļĩāļĢāļđāļāđāļāļāđāļĨāļ°āļāļāļēāļāļāļĩāđāļŦāļĨāļēāļāļŦāļĨāļēāļĒāļ āļēāļĒāđāļāđāļāļēāļĢāļāļĢāļīāļŦāļēāļĢāļāļēāļāļāļāļāļāļĢāļīāļĐāļąāļ āļāļīāđāļāļāļĩ āļāļđāđāļāļāļĢāđāđāļāđāļāđāļāļāļĢāđ āļāļģāļāļąāļ (āļĄāļŦāļēāļāļ) āđāļĨāļ°āļāļąāļāļāļĄāļīāļāļĢāļāļēāļāļāļļāļĢāļāļīāļ āļāļąāļāļāļļāļāļąāļāļāļīāđāļāļāļĩāļĄāļĩāļŠāļēāļāļēāļāļĩāđāđāļāļīāļāđāļŦāđāļāļĢāļīāļāļēāļĢāđāļĨāđāļ§āļĄāļēāļāļāļ§āđāļē 100 āļŠāļēāļāļēāļāļąāđāļ§āļāļĢāļ°āđāļāļĻ ...
āļĢāđāļ§āļĄāļāļēāļāļāļąāļāđāļĢāļē: DEVELOPMENT PROJECT FOR POTENTIAL PERSONNEL
Believing that the success is when our people is a great, Big C has assigned budget for potential personnel development project with a primary aim to bring employees who are qualified and ambitious to achieve their goal and to mai ...
āļŠāļ§āļąāļŠāļāļīāļāļēāļĢ
- āļāļģāļāļēāļ 5 āļ§āļąāļ/āļŠāļąāļāļāļēāļŦāđ
- āļāļąāđāļ§āđāļĄāļāļāļģāļāļēāļāļĒāļ·āļāļŦāļĒāļļāđāļ
- āļāļāļāļāļļāļāļŠāļģāļĢāļāļāđāļĨāļĩāđāļĒāļāļāļĩāļ
- āļāļĢāļ°āļāļąāļāļŠāļļāļāļ āļēāļ
- āļāļĢāļ°āļāļąāļāļāļĩāļ§āļīāļ
- āļāļĢāļ°āļāļąāļāļāļļāļāļąāļāļīāđāļŦāļāļļ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļĢāļ°āļāļāļāļāļēāļĢ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļēāļ
- āļĨāļēāļāļĨāļāļ
- āļŠāđāļ§āļāļĨāļāļāļāļąāļāļāļēāļ

