āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

Data Science Specialist

Date: 23 Jan 2025
Location: Chonburi, Sriracha (āļŠāļĨāļšāļļāļĢāļĩ), Thailand, 20230


ROLE & RESPONSIBILITY

  • Work with stakeholders throughout the organization to understand data needs, identify issues or opportunities for leveraging company data to propose solutions for support decision making to drive business solutions.
  • Adopting new technology, techniques, and methods such as machine learning or statistical techniques to produce new solutions to problems.
  • Conducts advanced data analysis and create the appropriate algorithm to solve analytics problems
  • Improve scalability, stability, accuracy, speed, and efficiency of existing data model
  • Collaborate with internal team and partner to scale up development to production
  • Maintain and fine tune existing analytic model in order to ensure model accuracy
  • Support the enhancement and accuracy of predictive automation capabilities based on valuable internal and external data and on established objectives for Machine Learning competencies.
  • Apply algorithms to generate accurate predictions and resolve dataset issues as they arise
  • Be Project manager for Data project and manager project scope, timeline, and budget
  • Manage relationships with stakeholders and coordinate work between different parties as well as providing regular update
  • Control / manage / govern Level 2 support, identify, fix and configuration related problems
  • Keep maintaining/up to date of data modelling and training model etc.
  • Run through Data flow diagram for model development


EDUCATION

Bachelor's degree or higher in computer science, statistics, or operations research or related technical discipline


EXPERIENCE

  • At least 5 years’ experience in a statistical and/or data science role optimization, data visualization, pattern recognition, cluster analysis and segmentation analysis, Expertise in advanced Analytica l techniques such as descriptive statistical modelling and algorithms, machine learning algorithms, optimization, data visualization, pattern recognition, cluster analysis and segmentation analysis
  • Expertise in advanced analytical techniques such as descriptive statistical modelling and algorithms, machine learning algorithms, optimization, data visualization, pattern recognition, cluster analysis and segmentation analysis
  • Experience using analytical tools and languages such as Python, R, SAS, Java, C, C++, C#, Matlab, SPSS IBM, Tableau, Qlikview, Rapid Miner, Apache , Pig, Spotfire, Micro S, SAP HANA, Oracle, or SOL-like languages
  • Experience working with large data sets, simulation/optimization and distributed computing tools (e.g., Map/Reduce, Hadoop, Hive, Spark)
  • Experience developing and deploying machine learning model in production environment.
  • Knowledge in oil and gas business processes is preferrable.


OTHER REQUIREMENTS

āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • 5 āļ›āļĩ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļšāļĢāļīāļŦāļēāļĢāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒ / āļšāļĢāļīāļŦāļēāļĢāđāļšāļĢāļ™āļ”āđŒāļŠāļīāļ™āļ„āđ‰āļē
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ€āļ„āļĄāļĩ / āļžāļĨāļēāļŠāļ•āļīāļ / āļāļĢāļ°āļ”āļēāļĐ
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.thaioilgroup.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1961
āļ„āļ°āđāļ™āļ™:5/5

āđ„āļ—āļĒāļ­āļ­āļĒāļĨāđŒ āđ€āļ›āđ‡āļ™āđ‚āļĢāļ‡āļāļĨāļąāđˆāļ™āđāļĢāļāđāļĨāļ°āđƒāļŦāļāđˆāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āđ„āļ”āđ‰āđ€āļĢāļīāđˆāļĄāļāđˆāļ­āļ•āļąāđ‰āļ‡āđƒāļ™āļ›āļĩ āļž.āļĻ. 2504 āļ āļēāļĒāđƒāļ•āđ‰āļ§āļīāļŠāļąāļĒāļ—āļąāļĻāļ™āđŒāļ‚āļ­āļ‡ "āļšāļĢāļīāļĐāļąāļ—āļœāļŠāļēāļ™āļĢāļ§āļĄāđ‚āļĢāļ‡āļāļĨāļąāđˆāļ™āđāļĨāļ°āđ€āļ„āļĄāļĩāļ āļąāļ“āļ‘āđŒāļŠāļąāđ‰āļ™āļ™āļģāđƒāļ™āļ āļđāļĄāļīāļ āļēāļ„āđ€āļ­āđ€āļŠāļĩāļĒāđāļ›āļ‹āļīāļŸāļīāļ" āļ“ āļ›āļąāļˆāļˆāļļāļšāļąāļ™āđ€āļĢāļēāļĒāļąāļ‡āļ„āļ‡āđ€āļ›āđ‡āļ™āđ‚āļĢāļ‡āļāļĨāļąāđˆāļ™āļ—āļĩāđˆāđƒāļŦāļāđˆāļ—āļĩāđˆāļŠāļļāļ”āđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻ āđāļĨāļ°āļĄāļĩāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļ—āļĩāđˆāļˆāļ°āđ€āļ•āļīāļšāđ‚āļ•āđāļ‚āđ‡āļ‡āđāļāļĢāđˆāļ‡āļ‚āļķāđ‰āļ™āđāļĨāļ°āļ­āļĒāļđāđˆāđƒāļ™āļ˜āļļāļĢāļ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

"āļ„āļ™" āđ€āļ›āđ‡āļ™āļ‚āļļāļĄāļžāļĨāļąāļ‡āļŦāļĨāļąāļāđƒāļ™āļāļēāļĢāļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™āļ­āļ‡āļ„āđŒāļāļĢ āļ‰āļ°āļ™āļąāđ‰āļ™āđ€āļĢāļēāļˆāļķāļ‡āļĄāļļāđˆāļ‡āļĄāļąāđˆāļ™āđƒāļŦāđ‰āļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāđƒāļ™āļāļēāļĢāļ”āļđāđāļĨāļ„āļ™āļĄāļēāđ€āļ›āđ‡āļ™āļ­āļąāļ™āļ”āļąāļšāļŦāļ™āļķāđˆāļ‡ (People First) āļāļĨāļļāđˆāļĄāđ„āļ—āļĒāļ­āļ­āļĒāļĨāđŒāđ€āļ­āļēāđƒāļˆāđƒāļŠāđˆāļ”āļđāđāļĨāļžāļ™āļąāļāļ‡āļēāļ™āđƒāļ™āļ—āļļāļāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ§āļąāļ™āđāļĢāļāļ‚āļ­āļ‡āļāļēāļĢāđ€āļĢāļīāđˆāļĄāļ‡āļēāļ™ āļ”āđ‰āļ§āļĒāļāļēāļĢāļšāļĢāļīāļŦāļēāļĢāļ—āļĢāļąāļžāļĒāļēāļāļĢāļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āđ€āļĨāļīāļĻāđ€āļ—āļĩāļĒāļšāđ€āļ—āđˆāļēāļ­āļ‡āļ„āđŒāļāļĢāļŠāļąāđ‰āļ™āļ™āļģāļĢāļ°āļ”āļąāļšāļ›āļĢāļ°āđ€āļ—āļĻ āļ­āļēāļ—āļī āļāļēāļĢāļžāļąāļ’āļ™āļēāļžāļ™āļąāļāļ‡āļēāļ™āđ€ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ
  • āļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļžāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļĄāļ·āļ­āļ­āļēāļŠāļĩāļž
  • āļāļ­āļ‡āļ—āļļāļ™āļŠāļģāļĢāļ­āļ‡āđ€āļĨāļĩāđ‰āļĒāļ‡āļŠāļĩāļž
  • āļ›āļĢāļ°āļāļąāļ™āļ­āļļāļšāļąāļ•āļīāđ€āļŦāļ•āļļ
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļļāļ‚āļ āļēāļž

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āđ„āļ—āļĒāļ­āļ­āļĒāļĨāđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āđ„āļ—āļĒāļ­āļ­āļĒāļĨāđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āđ„āļ—āļĒāļ­āļ­āļĒāļĨāđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ„āļ—āļĒāļ‹āļąāļĄāļ‹āļļāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WireformāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļĨāļīāļ•āđ€āļ•āļīāđ‰āļĨ āļŠāđ€āļ•āđ‡āļ›āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WV