āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

Data / ML Engineer
Work at Infinitas By Krungthai Co., Ltd.

Job Summary


Data Innovation team under Infinitas By Krungthai is a centralized data enabler to serve both digital and traditional arms of Krungthai Bank. We are seeking a highly skilled and motivated Cloud Data/ML Engineer to join our team. In this role, you will play a pivotal part in designing, developing, and managing end-to-end data solutions in a cloud-first environment. Collaborating with cross-functional teams, you will work on scalable data pipelines, machine learning service deployment, and robust data platforms leveraging AWS technologies. Join our team and help shape the future of banking!

 

Our team responsibilities

  • Data Pipeline Development: Design, implement, and optimize scalable ETL/ELT pipelines to ingest, transform, and store structured and unstructured data in a cloud environment (AWS is a core but not limit).
  • Machine Learning Pipeline Development: Work collaboratively with data scientists to productionize and maintain scalable machine learning services. The solutions encompass a variety of approaches, including traditional and near real-time machine learning, deployed across multi-state service architectures.
  • Data Platform: Collaborate closely with DevOps and infrastructure teams to design, implement, and manage scalable data storage and processing platforms. Leverage AWS services such as S3, Redshift, Glue, Lambda, Athena, and EMR to ensure performance, reliability, and cost-efficiency.
  • Data Modeling and Schema Management: Develop and maintain robust data models and schemas to support analytics, reporting, and operational requirements. Adhere to the design principle of establishing a "single version of truth" to ensure consistency, accuracy, and reliability across all data-driven processes.
  • Data/AI Quality-as-a-Service Development: Design, develop, and maintain scalable "Data/AI Quality-as-a-Service" solutions, adhering to zero-ops design principles. The scope of quality includes monitoring data drift, analyzing performance metrics, and detecting model drift to ensure consistent, reliable, and high-performing AI systems.
  • Cross-Functional Collaboration: Collaborate closely with data scientists, analysts, and application developers to ensure the seamless integration of data solutions into workflows, enhancing functionality and enabling data-driven decision-making.
  • Automation & Monitoring: Design and implement robust monitoring and automation frameworks to ensure the high availability, performance, and cost-efficiency of data workflows, guided by the principle of "Zero Ops by Design."
  • Compliance & Security: Uphold data security, privacy, and compliance with banking regulations and industry standards, ensuring all solutions meet rigorous governance requirements.
  • Continuous Improvement: Stay informed about emerging technologies and trends in cloud data engineering, advocating for their adoption to enhance system capabilities and maintain a competitive edge.

 

Qualification:

  • Educational Background
    • Bachelor's degree in Computer Science, Computer Engineering, Data Engineering, or a related field.
  • Experience
    • 3+ years of experience in cloud data engineering or similar roles.
    • Proven expertise in cloud data technologies.
    • Hands-on experience with big data technologies such as Apache Spark
  • Technical Skills
    • Proficiency in SQL and programming languages such as Python, Java, or Scala.
    • Expertise in data pipeline and workflow orchestration tools for both batch and real-time processing (e.g., Apache Airflow, AWS Step Functions).
    • Understanding of data warehouse and lakehouse architectures.
    • Familiarity with software development best practices, including SDLC concepts, CI/CD/(+CL) pipelines, and Infrastructure as Code tools (e.g., Terraform, AWS CloudFormation).
  • Other Skills
    • Strong problem-solving and analytical thinking capabilities.
    • Excellent communication and collaboration skills.
  • Preferred Qualifications
    • AWS Data Analytics - Specialty certification or equivalent experience.
    • Experience in banking or fintech environments. Understanding of financial data and regulatory requirements
    • Familiarity with real-time data processing and stream analytics.
  • Experience in working end-to-end with data scientists and analysts as part of "AnalyticsOps" to develop and maintain ML/AI services is a strong advantage.



    "āļ—āđˆāļēāļ™āļŠāļēāļĄāļēāļĢāļ–āļ­āđˆāļēāļ™āđāļĨāļ°āļĻāļķāļāļĐāļēāļ™āđ‚āļĒāļšāļēāļĒāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļŠāđˆāļ§āļ™āļ•āļąāļ§āļ‚āļ­āļ‡āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļ—āļĩāđˆ https://krungthai.com/th/content/privacy-policy āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰ āļ˜āļ™āļēāļ„āļēāļĢāđ„āļĄāđˆāļĄāļĩāđ€āļˆāļ•āļ™āļēāļŦāļĢāļ·āļ­āļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āđƒāļ”āđ† āļ—āļĩāđˆāļˆāļ°āļ›āļĢāļ°āļĄāļ§āļĨāļœāļĨāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļ­āđˆāļ­āļ™āđ„āļŦāļ§ āļĢāļ§āļĄāļ–āļķāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡āļĻāļēāļŠāļ™āļēāđāļĨāļ°/āļŦāļĢāļ·āļ­āļŦāļĄāļđāđˆāđ‚āļĨāļŦāļīāļ• āļ‹āļķāđˆāļ‡āļ­āļēāļˆāļ›āļĢāļēāļāļāļ­āļĒāļđāđˆāđƒāļ™āļŠāļģāđ€āļ™āļēāļšāļąāļ•āļĢāļ›āļĢāļ°āļˆāļģāļ•āļąāļ§āļ›āļĢāļ°āļŠāļēāļŠāļ™āļ‚āļ­āļ‡āļ—āđˆāļēāļ™āđāļ•āđˆāļ­āļĒāđˆāļēāļ‡āđƒāļ” āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āļāļĢāļļāļ“āļēāļ­āļĒāđˆāļēāļ­āļąāļ›āđ‚āļŦāļĨāļ”āđ€āļ­āļāļŠāļēāļĢāđƒāļ”āđ† āļĢāļ§āļĄāļ–āļķāļ‡āļŠāļģāđ€āļ™āļēāļšāļąāļ•āļĢāļ›āļĢāļ°āļˆāļģāļ•āļąāļ§āļ›āļĢāļ°āļŠāļēāļŠāļ™ āļŦāļĢāļ·āļ­āļāļĢāļ­āļāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļ­āđˆāļ­āļ™āđ„āļŦāļ§āļŦāļĢāļ·āļ­āļ‚āđ‰āļ­āļĄāļđāļĨāļ­āļ·āđˆāļ™āđƒāļ” āļ‹āļķāđˆāļ‡āđ„āļĄāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡āļŦāļĢāļ·āļ­āđ„āļĄāđˆāļˆāļģāđ€āļ›āđ‡āļ™āļŠāļģāļŦāļĢāļąāļšāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđƒāļ™āļāļēāļĢāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™āđ„āļ§āđ‰āļšāļ™āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļāļĢāļļāļ“āļēāļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđƒāļŦāđ‰āđāļ™āđˆāđƒāļˆāļ§āđˆāļēāđ„āļ”āđ‰āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļĨāļšāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļ­āđˆāļ­āļ™āđ„āļŦāļ§ (āļ–āđ‰āļēāļĄāļĩ) āļ­āļ­āļāļˆāļēāļāđ€āļĢāļ‹āļđāđ€āļĄāđˆāđāļĨāļ°āđ€āļ­āļāļŠāļēāļĢāļ­āļ·āđˆāļ™āđƒāļ”āļāđˆāļ­āļ™āļ—āļĩāđˆāļˆāļ°āļ­āļąāļ›āđ‚āļŦāļĨāļ”āđ€āļ­āļāļŠāļēāļĢāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ„āļ§āđ‰āļšāļ™āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒāđāļĨāđ‰āļ§āļ”āđ‰āļ§āļĒ āļ—āļąāđ‰āļ‡āļ™āļĩāđ‰ āļ˜āļ™āļēāļ„āļēāļĢāļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļ—āđˆāļēāļ™āđ€āļžāļ·āđˆāļ­āļšāļĢāļĢāļĨāļļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđƒāļ™āļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļĢāļąāļšāļšāļļāļ„āļ„āļĨāđ€āļ‚āđ‰āļēāļ—āļģāļ‡āļēāļ™ āļŦāļĢāļ·āļ­āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļī āļĨāļąāļāļĐāļ“āļ°āļ•āđ‰āļ­āļ‡āļŦāđ‰āļēāļĄ āļŦāļĢāļ·āļ­āļžāļīāļˆāļēāļĢāļ“āļēāļ„āļ§āļēāļĄāđ€āļŦāļĄāļēāļ°āļŠāļĄāļ‚āļ­āļ‡āļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļˆāļ°āđƒāļŦāđ‰āļ”āļģāļĢāļ‡āļ•āļģāđāļŦāļ™āđˆāļ‡ āļ‹āļķāđˆāļ‡āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĒāļīāļ™āļĒāļ­āļĄāđ€āļžāļ·āđˆāļ­āđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄ āđƒāļŠāđ‰ āļŦāļĢāļ·āļ­āđ€āļ›āļīāļ”āđ€āļœāļĒāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļ—āđˆāļēāļ™āļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāđ€āļ‚āđ‰āļēāļ—āļģāļŠāļąāļāļāļēāđāļĨāļ°āļāļēāļĢāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļ•āļēāļĄāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ‚āđ‰āļēāļ‡āļ•āđ‰āļ™ āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļ—āđˆāļēāļ™āđ„āļĄāđˆāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĒāļīāļ™āļĒāļ­āļĄāđƒāļ™āļāļēāļĢāđ€āļāđ‡āļšāļĢāļ§āļšāļĢāļ§āļĄ āđƒāļŠāđ‰ āļŦāļĢāļ·āļ­āđ€āļ›āļīāļ”āđ€āļœāļĒāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄ āļŦāļĢāļ·āļ­āļĄāļĩāļāļēāļĢāļ–āļ­āļ™āļ„āļ§āļēāļĄāļĒāļīāļ™āļĒāļ­āļĄāđƒāļ™āļ āļēāļĒāļŦāļĨāļąāļ‡ āļ˜āļ™āļēāļ„āļēāļĢāļ­āļēāļˆāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāđ€āļžāļ·āđˆāļ­āļšāļĢāļĢāļĨāļļāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ‚āđ‰āļēāļ‡āļ•āđ‰āļ™āđ„āļ”āđ‰ āđāļĨāļ°āļ­āļēāļˆ āļ—āļģāđƒāļŦāđ‰āļ—āđˆāļēāļ™āļŠāļđāļāđ€āļŠāļĩāļĒāđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļĢāļąāļšāđ€āļ‚āđ‰āļēāļ—āļģāļ‡āļēāļ™āļāļąāļšāļ˜āļ™āļēāļ„āļēāļĢ"
āļ—āļąāļāļĐāļ°āļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • ETL
  • DevOps
  • Automation
  • Big Data
  • SQL
āļĢāļ°āļ”āļąāļšāļāļēāļĢāļĻāļķāļāļĐāļē
  • āļŠāļēāļ‚āļēāļ§āļīāļĻāļ§āļāļĢāļĢāļĄāļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒ
  • āļŠāļēāļ‚āļēāļ§āļīāļ—āļĒāļēāļāļēāļĢāļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒ
āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • 3 āļ›āļĩ
āļĢāļ°āļ”āļąāļšāļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™
  • āļĢāļ°āļ”āļąāļšāđ€āļˆāđ‰āļēāļŦāļ™āđ‰āļēāļ—āļĩāđˆ
āļ—āļąāļāļĐāļ°āđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ
  • Compliance
  • Apache
  • Problem Solving
  • Analytical Thinking
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
  • āļ™āļąāļāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ˜āļ™āļēāļ„āļēāļĢ
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.krungthai.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1966
āļ„āļ°āđāļ™āļ™:4/5

āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) (KTB) āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ§āļąāļ™āļ—āļĩāđˆ 14 āļĄāļĩāļ™āļēāļ„āļĄ āļž.āļĻ. 2509 āđ€āļ›āđ‡āļ™āļŠāļ–āļēāļšāļąāļ™āļāļēāļĢāđ€āļ‡āļīāļ™āļ‚āļ­āļ‡āļĢāļąāļāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āđ€āļāļīāļ”āļˆāļēāļāļāļēāļĢāļ„āļ§āļšāļĢāļ§āļĄāļāļīāļˆāļāļēāļĢāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ˜āļ™āļēāļ„āļēāļĢāđ€āļāļĐāļ•āļĢāđāļĨāļ°āļ˜āļ™āļēāļ„āļēāļĢāļĄāļ“āļ‘āļĨ āļ˜āļ™āļēāļ„āļēāļĢāļ”āļģāđ€āļ™āļīāļ™āļ‡āļēāļ™āļ āļēāļĒāđƒāļ•āđ‰āļāļēāļĢāļāļģāļāļąāļšāļ”āļđāđāļĨāļ‚āļ­āļ‡āļāļĢāļ°āļ—āļĢāļ§āļ‡āļāļēāļĢāļ„āļĨāļąāāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļ—āļēāļ‡āļāļēāļĢāđ€āļ‡āļīāļ™āļ—āļĩāđˆāļ„āļĢāļ­āļšāļ„āļĨāļļāļĄ āļ—āļąāđ‰āļ‡āļāļēāļĢāļ˜āļ™āļēāļ„āļēāļĢāļŠāļģāļŦāļĢāļąāļšāļ­āļ‡ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

Krungthai Bank is dedicated to developing the competencies of its employees by providing opportunities for self-development, career growth, financial stability, and social responsibility. The bank believes that the progressive competency of its employees drives sustainable o ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: āđ€āļĨāļ‚āļ—āļĩāđˆ 35 āđāļ‚āļ§āļ‡āļ„āļĨāļ­āļ‡āđ€āļ•āļĒāđ€āļŦāļ™āļ·āļ­ āđ€āļ‚āļ•āļ§āļąāļ’āļ™āļē āļāļ—āļĄ. 10110
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āđ„āļ—āļĒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ‚āļ™āļ­āļīāđ‰āļ‡ āļšāļļāļ”āļ”āđ‰āļēāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļ­āļĩāđ€āļ§āļ™āļ—āđŒāļ›āđŠāļ­āļ›āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ nimbl3āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WV