āļāļĢāļ°āļāļēāļĻāļāļēāļāļāļĩāđāļŦāļĄāļāļāļēāļĒāļļāđāļĨāđāļ§
Responsibility
- Develop customer and business insights to identify business opportunities or resolve business challenges, and provide actionable recommendations to guide business decisions
- Prepare data from different data sets for building analytical models and delivering customer insights and recommendations to guide business decisions.
- Communicate findings and build buy-in with key stakeholders through data visualizations
- Deliver pre and post campaign analysis to guide the design and optimization of analytical models and personalized marketing campaigns
- Design, develop, and deploy analytical models and advanced analytic solutions using statistical techniques and machine learning technologies.
- Work with engineers to implement end-to-end process from model development to testing, validation, deployment, and lifecycle support.
- Research and Development on novel data science and analytics tools and ML/AI technology
Background/ Experiences
- 3+ years of Experience working with customer-centric data at big data-scale and applying machine learning, optimization and statistical methods to large datasets in various industries: financial services, telecom, retails, insurance, e-commerce, or related industries.
- Strong statistical knowledge, superior analytical abilities, and good knowledge of business intelligence solutions
- Full stack experience in data collection, aggregation, analysis, visualization, productionisation, and monitoring of ML products - MLOps
- Experience in being able to translate business needs into executable data science and analytics solutions
- Proven track record in client engagement, relationship building, and project management is PLUS
Knowledge & Skills
- Bachelor's degree or equivalent experience in quantitative field (Statistics, Mathematics, Computer Science, Engineering)
- Deep understanding of mathematics and statistical modeling, predictive modeling, and machine-learning algorithms with hands-on experience with Machine Learning frameworks.
- Excellent Proficiency in programing languages (SQL, R, Python) and Experience with business intelligence solutions (Tableau, PowerBI or Advanced Excel)
- Hand-on experience in data engineering, working with big data technology (Spark/Hadoop) and cloud platforms such as Azure, AWS, or GCP
- Excellent verbal, written, and interpersonal communication skills (both Thai and English)
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļĩāđāļāļģāđāļāđāļ
- āđāļĄāđāļĢāļ°āļāļļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļąāđāļāļāđāļģ
āđāļāļīāļāđāļāļ·āļāļ
- āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
āļŠāļēāļĒāļāļēāļ
- āđāļāļāļĩ / āđāļāļĩāļĒāļāđāļāļĢāđāļāļĢāļĄ
- āļāļēāļāļ§āļīāļāļąāļĒāđāļĨāļ°āļ§āļīāļāļĒāļēāļĻāļēāļŠāļāļĢāđ
āļāļĢāļ°āđāļ āļāļāļēāļ
- āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļĩāđāļĒāļ§āļāļąāļāļāļĢāļīāļĐāļąāļ
āđāļĄāļ·āđāļ 20 āļāļ§āđāļēāļāļĩāļāđāļāļ āđāļāļ§āļąāļāļāļĩāđ 21 āļĄāļĩāļāļēāļāļĄ 2531 āļāļĢāļīāļĐāļąāļ āļ āļēāļāđāļāđāđāļāļ·āđāļāđāļāļĨāļīāļ āļāļģāļāļąāļ āđāļāđāļāđāļāļāļąāđāļāļāļķāđāļāļāļāļāļ§āļēāļĄāļāļąāđāļāđāļ āļāļĢāļ°āļāļāļāļāļīāļāļāļēāļĢāļāļĨāļąāļāļāđāļģāļĄāļąāļ āđāļĨāļ°āļāđāļēāļāđāļģāļĄāļąāļāđāļāļ·āđāļāđāļāļĨāļīāļāđāļŦāđāļāļąāļāļāļļāļĄāļāļ āļāļđāđāļāļĢāļ°āļāļāļāļāļēāļĢāļāļĢāļ°āļĄāļāđāļĨāļ°āđāļĢāļāļāļēāļāļāļļāļāļŠāļēāļŦāļāļĢāļĢāļĄ āđāļĢāļīāđāļĄāļāđāļāļāļēāļāļ āļēāļāđāļāđāļāļāļāļāļĢāļ°āđāļāļĻāđāļāļĒ āļāļēāļāļāļĢāļīāļĐāļąāļ āļ āļēāļāđāļāđāđāļāļ·āđāļāđāļāļĨāļīāļ āļāļģāļāļąāļ āđāļāđāļāļāļāļ°āđāļāļĩāļĒāļāđāļāļĨāļĩāđāļĒāļāļŠāļđāđ āļāļĢāļīāļĐāļąāļ āļ ...
āļĢāđāļ§āļĄāļāļēāļāļāļąāļāđāļĢāļē: Joining PTG means becoming part of a dynamic and innovative company that is committed to sustainable growth and customer satisfaction. With over 30 years of experience, PTG offers a collaborative work environment that encourages personal and professional development.
āļŠāļ§āļąāļŠāļāļīāļāļēāļĢ
- āļāļēāļĢāļāļąāļāļāļēāđāļāļ·āđāļāļāļ§āļēāļĄāđāļāđāļāļĄāļ·āļāļāļēāļāļĩāļ
- āļāđāļēāđāļāļīāļāļāļēāļ
- āļāļģāļāļēāļāļāļāļāļŠāļāļēāļāļāļĩāđ
- āļāļĢāļ°āļāļąāļāļāļĩāļ§āļīāļ
- āļāļĢāļ°āļāļąāļāļŠāļąāļāļāļĄ
- āļāļĢāļ°āļāļąāļāļŠāļļāļāļ āļēāļ
- āļāļķāļāļāļāļĢāļĄ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļēāļ
- āļāļĢāļ°āļāļąāļāļāļļāļāļąāļāļīāđāļŦāļāļļ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļĢāļ°āļāļāļāļāļēāļĢ
- āđāļāļĢāļ·āđāļāļāđāļāļāļāļāļąāļāļāļēāļ
- āđāļāļĢāļāļāļēāļĢāļŠāđāļāđāļŠāļĢāļīāļĄāļāļļāļāļ āļēāļāļāļĩāļ§āļīāļ
- āļŠāđāļ§āļāļĨāļāļāļāļąāļāļāļēāļ
- āļŠāļĄāļēāļāļīāļāļāļīāļāđāļāļŠ
- āđāļāļāļēāļŠāđāļāļāļēāļĢāđāļĢāļĩāļĒāļāļĢāļđāđāđāļĨāļ°āļāļąāļāļāļē
- āļāđāļēāļĒāļāđāļēāļāļģāļāļēāļāļĨāđāļ§āļāđāļ§āļĨāļē
- āļāļāļāļāļļāļāļŠāļģāļĢāļāļāđāļĨāļĩāđāļĒāļāļāļĩāļ

