āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

Educational

  • Bachelor’s degree (or equivalent) degree in a quantitative field such as Data Science, Actuarial Science, Statistics, or Mathematics.
  • 5+ years of related practical experience, preferably in commercial insurance sector.
  • Solid understanding of insurance pricing principles, loss reserving, and risk assessment methodologies.
  • Familiarity with insurance industry regulations, standards, and best practices.


Responsibility

  • Develop and maintain loss cost models using GLMs and other advanced statistical techniques, incorporating relevant variables and factors for accurate pricing and risk assessment.
  • Analyse historical insurance data to identify patterns and trends, and determine the impact of various factors on loss costs.
  • Collaborate with underwriting, claims, and finance teams to understand business needs and provide data-driven insights for portfolio management.
  • Conduct rate level reviews to ensure appropriate pricing of insurance products, considering risk exposure, market dynamics, and profitability goals.
  • Enhance loss cost models over time by incorporating new data sources, refining variables,
  • and exploring innovative modelling techniques.
  • Evaluate the impact of pricing strategies, policy changes, and market shifts on portfolio performance, and make recommendations for adjustments, if needed.
  • Present findings and recommendations to stakeholders, including senior management and underwriting teams, in clear and concise reports.
  • Work closely with other departments including Underwriting, Actuarial, and Risk Management, providing them with the data and insights needed to make evidence-based decisions.


Functional Competency

  • Excellent analytical and problem-solving skills, with the ability to translate data into meaningful insights and recommendations.
  • Strong communication skills to effectively convey complex findings and recommendations to both technical and non-technical stakeholders.
  • Attention to detail and ability to work independently, managing multiple projects and deadlines efficiently
  • Strong proficiency in statistical modeling techniques, specifically GLMs, and experience with software tools like R, SAS, or Python.
  • Proficiency with data analysis and visualisation tools and platforms, preferably Qliksense, Power BI, Alteryx, etc.


Educational

  • Bachelor’s degree (or equivalent) degree in a quantitative field such as Data Science, Actuarial Science, Statistics, or Mathematics.
  • 5+ years of related practical experience, preferably in commercial insurance sector.
  • Solid understanding of insurance pricing principles, loss reserving, and risk assessment methodologies.
  • Familiarity with insurance industry regulations, standards, and best practices.


Responsibility

  • Develop and maintain loss cost models using GLMs and other advanced statistical techniques, incorporating relevant variables and factors for accurate pricing and risk assessment.
  • Analyse historical insurance data to identify patterns and trends, and determine the impact of various factors on loss costs.
  • Collaborate with underwriting, claims, and finance teams to understand business needs and provide data-driven insights for portfolio management.
  • Conduct rate level reviews to ensure appropriate pricing of insurance products, considering risk exposure, market dynamics, and profitability goals.
  • Enhance loss cost models over time by incorporating new data sources, refining variables,
  • and exploring innovative modelling techniques.
  • Evaluate the impact of pricing strategies, policy changes, and market shifts on portfolio performance, and make recommendations for adjustments, if needed.
  • Present findings and recommendations to stakeholders, including senior management and underwriting teams, in clear and concise reports.
  • Work closely with other departments including Underwriting, Actuarial, and Risk Management, providing them with the data and insights needed to make evidence-based decisions.


Functional Competency

  • Excellent analytical and problem-solving skills, with the ability to translate data into meaningful insights and recommendations.
  • Strong communication skills to effectively convey complex findings and recommendations to both technical and non-technical stakeholders.
  • Attention to detail and ability to work independently, managing multiple projects and deadlines efficiently
  • Strong proficiency in statistical modeling techniques, specifically GLMs, and experience with software tools like R, SAS, or Python.
  • Proficiency with data analysis and visualisation tools and platforms, preferably Qliksense, Power BI, Alteryx, etc.

āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒ / āļŠāļĩāļ§āļīāļ•
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.acegroup.com/th-th/
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:2001
āļ„āļ°āđāļ™āļ™:4.5/5

Chubb āđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāļāļąāļšāļšāļĢāļīāļĐāļąāļ—āļ—āļĩāđˆāļ”āļģāđ€āļ™āļīāļ™āļ˜āļļāļĢāļāļīāļˆāļ‚āđ‰āļēāļĄāļŠāļēāļ•āļīāļ˜āļļāļĢāļāļīāļˆāļ‚āļ™āļēāļ”āļāļĨāļēāļ‡āđāļĨāļ°āļ‚āļ™āļēāļ”āļĒāđˆāļ­āļĄāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāļ—āļĢāļąāļžāļĒāđŒāļŠāļīāļ™āđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāđ€āļšāđ‡āļ”āđ€āļ•āļĨāđ‡āļ” āļĨāļđāļāļ„āđ‰āļēāļĢāļēāļĒāļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļąāđˆāļ‡āļ„āļąāđˆāļ‡āļ‹āļķāđˆāļ‡āļ•āđ‰āļ­āļ‡āļāļēāļĢāļ„āļ§āļēāļĄāļ„āļļāđ‰āļĄāļ„āļĢāļ­āļ‡āļ—āļĢāļąāļžāļĒāđŒāļŠāļīāļ™āļĄāļđāļĨāļ„āđˆāļēāļŠāļđāļ‡ āļĨāļđāļāļ„āđ‰āļēāļĢāļēāļĒāļšāļļāļ„āļ„āļĨāļ—āļąāđˆāļ§āđ„āļ›āļ—āļĩāđˆāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļŠāļĩāļ§āļīāļ• āļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāļ­āļļāļšāļąāļ•āļīāđ€āļŦāļ•āļļāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨ āļ›āļĢāļ°āļāļąāļ™āļŠāļļāļ‚āļ āļēāļžāđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ āļ›āļĢāļ°āļāļąāļ™āļ āļą ... āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē: At ACE, we recruit people who will contribute to the growth and success of the company and focus on meeting customers' needs. We are committed to developing all our employees and to ensuring they are satisfied in their work at ACE, which is one of the world’s leading insurance companies. We are a ... āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: Sinsatorn tower
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļāļ­āļ‡āļ—āļļāļ™āļšāļģāđ€āļŦāļ™āđ‡āļˆāļšāļģāļ™āļēāļ
  • āļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļžāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļĄāļ·āļ­āļ­āļēāļŠāļĩāļž
  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļąāļ‡āļ„āļĄ
  • āļāļķāļāļ­āļšāļĢāļĄ
  • āđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļžāļąāļ’āļ™āļē

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļŠāļąāļšāļšāđŒ āđ„āļĨāļŸāđŒ āđāļ­āļŠāļŠāļąāļ§āļĢāļąāļ™āļ‹āđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļŠāļąāļšāļšāđŒ āđ„āļĨāļŸāđŒ āđāļ­āļŠāļŠāļąāļ§āļĢāļąāļ™āļ‹āđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļŠāļąāļšāļšāđŒ āđ„āļĨāļŸāđŒ āđāļ­āļŠāļŠāļąāļ§āļĢāļąāļ™āļ‹āđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļšāļĢāļīāļĐāļąāļ— āļˆāļīāļ‹āļ—āļīāļāļ‹āđŒ āļˆāļģāļāļąāļ”āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ„āļ—āļĒāđ‚āļ‹āļĨāđˆāļēāļĢāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ‚āļ­āđ‚āļ‹āļ§āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WV