āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

Educational

  • Background in programming, databases and/or big data technologies OR
  • BS/MS in software engineering, computer science, economics or other engineering fields


Responsibility

  • Partner with Data Architect and Data Integration Engineer to enhance/maintain optimal data pipeline architecture aligned to published standards
  • Assemble medium, complex data sets that meet functional /non-functional business requirements
  • Design and implement internal process improvements: automating manual processes, optimizing data delivery, re-designing infrastructure for greater scalability, etc.
  • Build the infrastructure required for optimal extraction transformation, and loading of data from a wide variety of data sources ‘big data’ technologies
  • Build analytics tools that utilize the data pipeline to provide actionable insights into customer acquisition, operational efficiency and other key business performance metrics
  • Work with stakeholders including Domain leads, and Teams to assist with data-related technical issues and support their data infrastructure needs
  • Ensure technology footprint adheres to data security policies and procedures related to encryption, obfuscation and role based access
  • Create data tools for analytics and data scientist team members


Functional Competency

  • Knowledge of data and analytics framework supporting data lakes, warehouses, marts, reporting, etc
  • Defining data retention policies, monitoring performance and advising any necessary infrastructure changes based on functional and non-functional requirements
  • In depth knowledge of data engineering discipline
  • Extensive experience working with Big Data tools and building data solutions for advanced analytics
  • Minimum of 5+ years' hands-on experience with a strong data background
  • Solid programming skills in Java, Python and SQL
  • Clear hands-on experience with database systems - Hadoop ecosystem, Cloud technologies (e.g. AWS, Azure, Google), in-memory database systems (e.g. HANA, Hazel cast, etc) and other database systems - traditional RDBMS (e.g. Teradata, SQL Server, Oracle), and NoSQL databases (e.g. Cassandra, MongoDB, DynamoDB)
  • Practical knowledge across data extraction and transformation tools - traditional ETL tools (e.g. Informatica, Ab Initio, Altryx) as well as more recent big data tools


Educational

  • Background in programming, databases and/or big data technologies OR
  • BS/MS in software engineering, computer science, economics or other engineering fields


Responsibility

  • Partner with Data Architect and Data Integration Engineer to enhance/maintain optimal data pipeline architecture aligned to published standards
  • Assemble medium, complex data sets that meet functional /non-functional business requirements
  • Design and implement internal process improvements: automating manual processes, optimizing data delivery, re-designing infrastructure for greater scalability, etc.
  • Build the infrastructure required for optimal extraction transformation, and loading of data from a wide variety of data sources ‘big data’ technologies
  • Build analytics tools that utilize the data pipeline to provide actionable insights into customer acquisition, operational efficiency and other key business performance metrics
  • Work with stakeholders including Domain leads, and Teams to assist with data-related technical issues and support their data infrastructure needs
  • Ensure technology footprint adheres to data security policies and procedures related to encryption, obfuscation and role based access
  • Create data tools for analytics and data scientist team members


Functional Competency

  • Knowledge of data and analytics framework supporting data lakes, warehouses, marts, reporting, etc
  • Defining data retention policies, monitoring performance and advising any necessary infrastructure changes based on functional and non-functional requirements
  • In depth knowledge of data engineering discipline
  • Extensive experience working with Big Data tools and building data solutions for advanced analytics
  • Minimum of 5+ years' hands-on experience with a strong data background
  • Solid programming skills in Java, Python and SQL
  • Clear hands-on experience with database systems - Hadoop ecosystem, Cloud technologies (e.g. AWS, Azure, Google), in-memory database systems (e.g. HANA, Hazel cast, etc) and other database systems - traditional RDBMS (e.g. Teradata, SQL Server, Oracle), and NoSQL databases (e.g. Cassandra, MongoDB, DynamoDB)
  • Practical knowledge across data extraction and transformation tools - traditional ETL tools (e.g. Informatica, Ab Initio, Altryx) as well as more recent big data tools

āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļ§āļīāļĻāļ§āļāļĢāļĢāļĄ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒ / āļŠāļĩāļ§āļīāļ•
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.acegroup.com/th-th/
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:2001
āļ„āļ°āđāļ™āļ™:4.5/5

Chubb āđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāļāļąāļšāļšāļĢāļīāļĐāļąāļ—āļ—āļĩāđˆāļ”āļģāđ€āļ™āļīāļ™āļ˜āļļāļĢāļāļīāļˆāļ‚āđ‰āļēāļĄāļŠāļēāļ•āļīāļ˜āļļāļĢāļāļīāļˆāļ‚āļ™āļēāļ”āļāļĨāļēāļ‡āđāļĨāļ°āļ‚āļ™āļēāļ”āļĒāđˆāļ­āļĄāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāļ—āļĢāļąāļžāļĒāđŒāļŠāļīāļ™āđāļĨāļ°āļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāđ€āļšāđ‡āļ”āđ€āļ•āļĨāđ‡āļ” āļĨāļđāļāļ„āđ‰āļēāļĢāļēāļĒāļšāļļāļ„āļ„āļĨāļ—āļĩāđˆāļĄāļąāđˆāļ‡āļ„āļąāđˆāļ‡āļ‹āļķāđˆāļ‡āļ•āđ‰āļ­āļ‡āļāļēāļĢāļ„āļ§āļēāļĄāļ„āļļāđ‰āļĄāļ„āļĢāļ­āļ‡āļ—āļĢāļąāļžāļĒāđŒāļŠāļīāļ™āļĄāļđāļĨāļ„āđˆāļēāļŠāļđāļ‡ āļĨāļđāļāļ„āđ‰āļēāļĢāļēāļĒāļšāļļāļ„āļ„āļĨāļ—āļąāđˆāļ§āđ„āļ›āļ—āļĩāđˆāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ›āļĢāļ°āļāļąāļ™āļŠāļĩāļ§āļīāļ• āļ›āļĢāļ°āļāļąāļ™āļ āļąāļĒāļ­āļļāļšāļąāļ•āļīāđ€āļŦāļ•āļļāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨ āļ›āļĢāļ°āļāļąāļ™āļŠāļļāļ‚āļ āļēāļžāđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ āļ›āļĢāļ°āļāļąāļ™āļ āļą ... āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē: At ACE, we recruit people who will contribute to the growth and success of the company and focus on meeting customers' needs. We are committed to developing all our employees and to ensuring they are satisfied in their work at ACE, which is one of the world’s leading insurance companies. We are a ... āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: Sinsatorn tower
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļāļ­āļ‡āļ—āļļāļ™āļšāļģāđ€āļŦāļ™āđ‡āļˆāļšāļģāļ™āļēāļ
  • āļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļžāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļĄāļ·āļ­āļ­āļēāļŠāļĩāļž
  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļąāļ‡āļ„āļĄ
  • āļāļķāļāļ­āļšāļĢāļĄ
  • āđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļžāļąāļ’āļ™āļē

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļŠāļąāļšāļšāđŒ āđ„āļĨāļŸāđŒ āđāļ­āļŠāļŠāļąāļ§āļĢāļąāļ™āļ‹āđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļŠāļąāļšāļšāđŒ āđ„āļĨāļŸāđŒ āđāļ­āļŠāļŠāļąāļ§āļĢāļąāļ™āļ‹āđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļŠāļąāļšāļšāđŒ āđ„āļĨāļŸāđŒ āđāļ­āļŠāļŠāļąāļ§āļĢāļąāļ™āļ‹āđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļ”āļĩāđ€āļˆ āđ€āļ‹āđ‡āļ™āđ€āļ•āļ­āļĢāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ‚āļāđ‚āļāļžāļĢāļīāđ‰āļ™āļ—āđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļĨāļēāđ€āļĄāļ‹āļ­āļ‡ āđ€āļ”āļ„āļ„āļ­āđ€āļĢāļŠāļąāđˆāļ™āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WV