āļŠāļĄāļąāļ„āļĢāđ‚āļ›āļĢāļ”āļ„āļĨāļīāļāļ—āļĩāđˆāļ›āļļāđˆāļĄ "Apply"
If you are an active SCB employee, please apply through Workday by searching "Find Jobs".

Job Description
  • Manage/ Clean/ Prepare internal and external data (structured/ semi-structured/ unstructured data) for model development/ deployment/ monitoring, including the production of data quality and integrity report
  • Develop statistical/ expert/ hybrid models to be able to enhance the model when model deterioration is indicated using variety of data modeling techniques such as Logistic Regression/ Random Forest/ Gradient Boosting/ Non-Parametric Regression. Also, in case of using external consultants, be able to work closely with them across all model life cycle
  • Generate prescriptive models to respond to interactive decision to optimize risks and rewards
  • Deploy credit risk models into Databricks platform, collection system and credit decision engine and maintain any model adjustment
  • Assist and work closely with related parties, e.g. business users, credit approval officers and relationship managers to ensure credit risk models are appropriate and efficient for business direction and support for new digital lending risk assessment and platform
  • Ensure all credit risk models are qualified to be used through model life cycle. Regularly perform model monitoring, model assessment and propose proactive action/ recommendation to improve the model
  • Assist and design for business opportunity to develop alternative credit score from partnership data
  • Collaborate with IT and data engineer to ensure data availability and quality from various sources (both on-premise/ cloud) to develop an efficient model

Qualifications
  • Bachelor’s or higher degree in Finance, Statistics, Mathematics, Economics, MIS, Engineer, Data scientist or any related fields
  • At least 1-2 year experiences credit risk analytics, credit risk modeling/ scoring in retail banking, consumer finance or any financial business
  • Strong knowledge and skill in machine learning, credit scoring, data analytics using R/ Python/ PySpark, MATLAB, SPSS, SAS, SQL or similar required
  • Analytical mindset with excellent critical thinking ability and data analytics skills
  • Excellent computer skills and programming tools
  • Good command in both written and spoken English
  • Good project management skills
  • Good team player with a positive attitude toward hard working and working under pressure
  • Experienced in credit risk modeling, model monitoring/ validation/ deployment/ maintenance preferred
  • Prior experience in Basel/ IFRS9, RAROC, Stress Test, Big Data, Data Mining, Digital leading, Fin-tech/ Start-up is a plus
We're committed to bringing passion and customer focus to the business.
If you like wild growth and working with happy, enthusiastic over-achievers, you'll enjoy your career with us.
āļ—āļąāļāļĐāļ°āļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • Finance
  • Statistics
  • Python
  • English (Good)
āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • 1 āļ›āļĩ
āļ—āļąāļāļĐāļ°āđ€āļžāļīāđˆāļĄāđ€āļ•āļīāļĄ
  • Matlab
  • SPSS
  • SAS
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļšāļĢāļīāļŦāļēāļĢāļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒ / āļšāļĢāļīāļŦāļēāļĢāđāļšāļĢāļ™āļ”āđŒāļŠāļīāļ™āļ„āđ‰āļē
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ˜āļ™āļēāļ„āļēāļĢ
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:careers.scb.co.th/th
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1906
āļ„āļ°āđāļ™āļ™:4/5

āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ—āļĒāļžāļēāļ“āļīāļŠāļĒāđŒ āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­ SCB āđ€āļ›āđ‡āļ™āļ˜āļ™āļēāļ„āļēāļĢāļžāļēāļ“āļīāļŠāļĒāđŒāđāļŦāđˆāļ‡āđāļĢāļāļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ āļāđˆāļ­āļ•āļąāđ‰āļ‡āļ‚āļķāđ‰āļ™āđ‚āļ”āļĒāļžāļĢāļ°āļšāļĢāļĄāļĢāļēāļŠāļēāļ™āļļāļāļēāļ•āđ€āļĄāļ·āđˆāļ­āļ§āļąāļ™āļ—āļĩāđˆ 30 āļĄāļāļĢāļēāļ„āļĄ āļž.āļĻ. 2449  āļ•āļĨāļ­āļ”āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļāļ§āđˆāļē 110 āļ›āļĩāļ—āļĩāđˆāļœāđˆāļēāļ™āļĄāļē āļ˜āļ™āļēāļ„āļēāļĢāļĄāļĩāļšāļ—āļšāļēāļ—āļŠāļģāļ„āļąāļāđƒāļ™āļāļēāļĢāļžāļąāļ’āļ™āļēāļ āļēāļ„āļāļēāļĢāđ€āļ‡āļīāļ™āļ‚āļ­āļ‡āļ›āļĢāļ°āđ€āļ—āļĻ āļ˜āļ™āļēāļ„āļēāļĢāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļ—āļēāļ‡āļāļēāļĢāđ€āļ‡āļīāļ™āļ—āļĩāđˆ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

Joining Siam Commercial Bank means becoming part of a legacy that has been instrumental in shaping Thailand's banking industry. At SCB, we value innovation, collaboration, and a commitment to excellence. Employees are provided with opportunities for professional gro ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: Siam Commercial Bank PCL., Head Office 9th Floor, Zone C, 9 Ratchadapisek Rd., Jatujak, Bangkok, Thailand 10900
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļžāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļĄāļ·āļ­āļ­āļēāļŠāļĩāļž
  • āđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļžāļąāļ’āļ™āļē
  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ
  • āđ‚āļšāļ™āļąāļŠāļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļœāļĨāļ‡āļēāļ™
āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ—āļĒāļžāļēāļ“āļīāļŠāļĒāđŒ āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ—āļĒāļžāļēāļ“āļīāļŠāļĒāđŒ āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ—āļĒāļžāļēāļ“āļīāļŠāļĒāđŒ āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļˆāļ‡āļŠāļ–āļīāļ•āļĒāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļāļĢāļļāļ‡āđ„āļ—āļĒāļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļŸāļēāļĢāđŒāļ­āļĩāļŠāļ—āđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ‹āđ‡āļ™āļˆāļđāļĢāļĩāđˆ āļ—āđ€āļ§āļ™āļ•āļĩāđ‰āļ§āļąāļ™