āļāļĢāļ°āļāļēāļĻāļāļēāļāļāļĩāđāļŦāļĄāļāļāļēāļĒāļļāđāļĨāđāļ§
Key Responsibilities
Design, develop, and maintain robust and scalable data pipelines using tools such as Apache Airflow, PySpark, and cloud-native services (e.g., Azure Data Factory, Microsoft Fabric Pipelines).
Manage data ingestion from APIs, files, and databases into data lakes or data warehouses (e.g., Microsoft Fabric Lakehouse, Iceberg, DWS).
Ensure seamless data integration across on-premise, cloud, and hybrid environments.
Implement data validation, standardization, and transformation to ensure high data quality.
Apply data encryption, masking, and compliance controls to maintain security and privacy standards.
Collaborate with Data Scientists to deploy ML models and integrate predictive insights into production pipelines (e.g., using Azure Machine Learning or Fabric Notebooks).
Support AI-powered automation and data insight generation through tools like Microsoft Co-pilot Studio or LLM-powered interfaces (chat-to-data).
Assist in building lightweight AI chatbots or agents that leverage existing datasets to enhance business efficiency.
Qualifications & Skills
- 3â5+ years of experience in Data Engineering or AI Engineering roles.
Proficiency in Python, SQL, and big data frameworks (Apache Airflow, Spark, PySpark).
- Experience with cloud platforms: Azure, Huawei Cloud, or AWS.
Familiar with Microsoft Fabric services: OneLake, Lakehouse, Notebooks, Pipelines, and Real-Time Analytics.
Hands-on with Microsoft Co-pilot Studio to design chatbots, agents, or LLM-based solutions.
- Experience in ML model deployment using Azure ML, ModelArts, or similar platforms.
- Understanding of vector databases (e.g., Qdrant), LLM orchestration (e.g., LangChain), and prompt engineering is a plus.
āļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļĩāđāļāļģāđāļāđāļ
- āđāļĄāđāļĢāļ°āļāļļāļāļĢāļ°āļŠāļāļāļēāļĢāļāđāļāļąāđāļāļāđāļģ
āđāļāļīāļāđāļāļ·āļāļ
- āļŠāļēāļĄāļēāļĢāļāļāđāļāļĢāļāļāđāļāđ
āļŠāļēāļĒāļāļēāļ
- āđāļāļāļĩ / āđāļāļĩāļĒāļāđāļāļĢāđāļāļĢāļĄ
āļāļĢāļ°āđāļ āļāļāļēāļ
- āļāļēāļāļāļĢāļ°āļāļģ
āđāļāļĩāđāļĒāļ§āļāļąāļāļāļĢāļīāļĐāļąāļ
āļāļĨāļļāđāļĄāļāļĢāļīāļĐāļąāļāļŠāļĒāļēāļĄāļāļīāļ§āļĢāļĢāļāļāđ āļāļđāđāđāļāđāļāđāļāđāļēāļāļāļāļĻāļđāļāļĒāđāļāļēāļĢāļāđāļēāļāļąāđāļāļāļģāļāļāļāđāļĄāļ·āļāļāđāļāļĒ āļāļķāđāļāļāļĢāļ°āļāļāļāļāđāļ§āļĒ āļĻāļđāļāļĒāđāļāļēāļĢāļāđāļēāļŠāļĒāļēāļĄāļāļīāļŠāļāļąāļāđāļ§āļāļĢāļĩāđ, āļĻāļđāļāļĒāđāļāļēāļĢāļāđāļēāļŠāļĒāļēāļĄāđāļāđāļāđāļāļāļĢāđāđāļĨāļ°āļĻāļđāļāļĒāđāļāļēāļĢāļāđāļēāļŠāļĒāļēāļĄāļāļēāļĢāļēāļāļāļ, āļāļēāļĢāļēāđāļāļāđ āļāļēāļĢāđāļ āļĢāļ§āļĄāļāļķāļāļĢāđāļēāļ Loft, āļāļēāļāļēāļĢāļŠāļĒāļēāļĄāļāļēāļ§āđāļ§āļāļĢāđ,āđāļĨāļ°āļāļēāļāļēāļĢāļāļāļāļĢāļāļŠāļĒāļēāļĄ āļāļķāđāļāļāļģāđāļāļīāļāļāļļāļĢāļāļīāļāļĄāļēāļāļēāļāļāļ§āđāļē 50 āļāļĩ āļāļģāļĨāļąāļāļŠāļĢāļĢāļŦāļēāļāļļāļāļĨāļēāļāļĢāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāļĢāļđāđ āļāļ§āļēāļĄāļŠ ...
āļĢāđāļ§āļĄāļāļēāļāļāļąāļāđāļĢāļē: Siam Piwat is also determined to âbe the firstâ in the business to develop national-scale projects with creativity, innovation, and top quality management. We want to give back to the community by providing opportunities for a better quality of life in the Thai society.
āļŠāļ§āļąāļŠāļāļīāļāļēāļĢ
- āļāļĢāļ°āļāļąāļāļāļąāļāļāļāļĢāļĢāļĄ
- āļāļģāļāļēāļ 5 āļ§āļąāļ/āļŠāļąāļāļāļēāļŦāđ
- āļāļĢāļ°āļāļąāļāļāļĩāļ§āļīāļ
- āļāļĢāļ°āļāļąāļāļŠāļļāļāļ āļēāļ
- āđāļāļāļąāļŠāļāļķāđāļāļāļĒāļđāđāļāļąāļāļāļĨāļāļēāļ
- āđāļāļĢāļ·āđāļāļāđāļāļāļāļāļąāļāļāļēāļ
- āļāļķāļāļāļāļĢāļĄ
- āđāļāļāļēāļŠāđāļāļāļēāļĢāđāļĢāļĩāļĒāļāļĢāļđāđāđāļĨāļ°āļāļąāļāļāļē
- āļĨāļēāļāļĨāļāļ
- āļāļāļāļāļļāļāļŠāļģāļĢāļāļāđāļĨāļĩāđāļĒāļāļāļĩāļ
- āļāļĢāļ°āļāļąāļāļŠāļąāļāļāļĄ
