āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

Key Responsibilities

  • Design, develop, and maintain robust and scalable data pipelines using tools such as Apache Airflow, PySpark, and cloud-native services (e.g., Azure Data Factory, Microsoft Fabric Pipelines).

  • Manage data ingestion from APIs, files, and databases into data lakes or data warehouses (e.g., Microsoft Fabric Lakehouse, Iceberg, DWS).

  • Ensure seamless data integration across on-premise, cloud, and hybrid environments.

  • Implement data validation, standardization, and transformation to ensure high data quality.

  • Apply data encryption, masking, and compliance controls to maintain security and privacy standards.

AI & Intelligent Automation
  • Collaborate with Data Scientists to deploy ML models and integrate predictive insights into production pipelines (e.g., using Azure Machine Learning or Fabric Notebooks).

  • Support AI-powered automation and data insight generation through tools like Microsoft Co-pilot Studio or LLM-powered interfaces (chat-to-data).

  • Assist in building lightweight AI chatbots or agents that leverage existing datasets to enhance business efficiency.

Qualifications & Skills

  • 3–5+ years of experience in Data Engineering or AI Engineering roles.
  • Proficiency in Python, SQL, and big data frameworks (Apache Airflow, Spark, PySpark).

  • Experience with cloud platforms: Azure, Huawei Cloud, or AWS.
  • Familiar with Microsoft Fabric services: OneLake, Lakehouse, Notebooks, Pipelines, and Real-Time Analytics.

  • Hands-on with Microsoft Co-pilot Studio to design chatbots, agents, or LLM-based solutions.

  • Experience in ML model deployment using Azure ML, ModelArts, or similar platforms.
  • Understanding of vector databases (e.g., Qdrant), LLM orchestration (e.g., LangChain), and prompt engineering is a plus.


āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āđ„āļ­āļ—āļĩ / āđ€āļ‚āļĩāļĒāļ™āđ‚āļ›āļĢāđāļāļĢāļĄ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:500-1000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļžāļąāļ’āļ™āļēāļ­āļŠāļąāļ‡āļŦāļēāļĢāļīāļĄāļ—āļĢāļąāļžāļĒāđŒ
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.siampiwat.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1958
āļ„āļ°āđāļ™āļ™:5/5

āļāļĨāļļāđˆāļĄāļšāļĢāļīāļĐāļąāļ—āļŠāļĒāļēāļĄāļžāļīāļ§āļĢāļĢāļ˜āļ™āđŒ āļœāļđāđ‰āđ€āļ›āđ‡āļ™āđ€āļˆāđ‰āļēāļ‚āļ­āļ‡āļĻāļđāļ™āļĒāđŒāļāļēāļĢāļ„āđ‰āļēāļŠāļąāđ‰āļ™āļ™āļģāļ‚āļ­āļ‡āđ€āļĄāļ·āļ­āļ‡āđ„āļ—āļĒ āļ‹āļķāđˆāļ‡āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒ āļĻāļđāļ™āļĒāđŒāļāļēāļĢāļ„āđ‰āļēāļŠāļĒāļēāļĄāļ”āļīāļŠāļ„āļąāļŸāđ€āļ§āļ­āļĢāļĩāđˆ, āļĻāļđāļ™āļĒāđŒāļāļēāļĢāļ„āđ‰āļēāļŠāļĒāļēāļĄāđ€āļ‹āđ‡āļ™āđ€āļ•āļ­āļĢāđŒāđāļĨāļ°āļĻāļđāļ™āļĒāđŒāļāļēāļĢāļ„āđ‰āļēāļŠāļĒāļēāļĄāļžāļēāļĢāļēāļāļ­āļ™, āļžāļēāļĢāļēāđ„āļ”āļ‹āđŒ āļžāļēāļĢāđŒāļ„ āļĢāļ§āļĄāļ–āļķāļ‡āļĢāđ‰āļēāļ™ Loft, āļ­āļēāļ„āļēāļĢāļŠāļĒāļēāļĄāļ—āļēāļ§āđ€āļ§āļ­āļĢāđŒ,āđāļĨāļ°āļ­āļēāļ„āļēāļĢāļˆāļ­āļ”āļĢāļ–āļŠāļĒāļēāļĄ āļ‹āļķāđˆāļ‡āļ”āļģāđ€āļ™āļīāļ™āļ˜āļļāļĢāļāļīāļˆāļĄāļēāļ™āļēāļ™āļāļ§āđˆāļē 50 āļ›āļĩ āļāļģāļĨāļąāļ‡āļŠāļĢāļĢāļŦāļēāļšāļļāļ„āļĨāļēāļāļĢāļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļĢāļđāđ‰ āļ„āļ§āļēāļĄāļŠ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

Siam Piwat is also determined to “be the first” in the business to develop national-scale projects with creativity, innovation, and top quality management. We want to give back to the community by providing opportunities for a better quality of life in the Thai society.

āđ€āļ‚āļ•āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™: āļ›āļ—āļļāļĄāļ§āļąāļ™
āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: 989 Rama I Road, Pathumwan, Bangkok
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļ›āļĢāļ°āļāļąāļ™āļ—āļąāļ™āļ•āļāļĢāļĢāļĄ
  • āļ—āļģāļ‡āļēāļ™ 5 āļ§āļąāļ™/āļŠāļąāļ›āļ”āļēāļŦāđŒ
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļĩāļ§āļīāļ•
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļļāļ‚āļ āļēāļž
  • āđ‚āļšāļ™āļąāļŠāļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļœāļĨāļ‡āļēāļ™
  • āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āđāļšāļšāļžāļ™āļąāļāļ‡āļēāļ™
  • āļāļķāļāļ­āļšāļĢāļĄ
  • āđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļžāļąāļ’āļ™āļē
  • āļĨāļēāļ„āļĨāļ­āļ”
  • āļāļ­āļ‡āļ—āļļāļ™āļŠāļģāļĢāļ­āļ‡āđ€āļĨāļĩāđ‰āļĒāļ‡āļŠāļĩāļž
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļąāļ‡āļ„āļĄ

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļŠāļĒāļēāļĄāļžāļīāļ§āļĢāļĢāļ˜āļ™āđŒ āļˆāļģāļāļąāļ” āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļŠāļĒāļēāļĄāļžāļīāļ§āļĢāļĢāļ˜āļ™āđŒ āļˆāļģāļāļąāļ” āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļŠāļĒāļēāļĄāļžāļīāļ§āļĢāļĢāļ˜āļ™āđŒ āļˆāļģāļāļąāļ” āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ WVāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āđ€āļ—āđ€āļĨāļ­āļīāļ™āđ€āļ—āļĨāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļžāļĨāđ‡āļ­āļ•āđ€āļŪāđ‰āļēāļŠāđŒ