āļ›āļĢāļ°āļāļēāļĻāļ‡āļēāļ™āļ™āļĩāđ‰āļŦāļĄāļ”āļ­āļēāļĒāļļāđāļĨāđ‰āļ§

What you'll do

  • Understand Business Needs & Define Data Requirements
    Meet with business teams to understand their challenges and goals.
    Work closely with the Data Product Owner (Data PO) to translate business needs into data requirements.
    Identify key metrics to measure success.
    Support the Data PO in documenting business needs and ensuring the right data is collected.

  • Work with Data & Generate Insights
    Gather, clean, and analyze data from multiple sources to ensure accuracy.
    Identify trends, patterns, and anomalies in the data.
    Use visualization tools (e.g., Tableau) to present findings in an easy-to-understand format.
    Apply statistical analysis and basic machine learning techniques (if required).

  • Collaborate with the Data Squad
    Work side-by-side with the Data Product Owner (Data PO) to ensure data solutions align with business needs.
    Coordinate with Data Engineers to structure and optimize data pipelines.
    Align with Data Governance teams to ensure compliance and data quality.
    Engage with Data Scientists if advanced analytics or AI/ML models are needed for a project.
    Ensure all stakeholders (business teams, IT, and analytics) work together effectively.

  • Support Business Users in Making Data-Driven Decisions
    Assist business teams in using self-service dashboards and reports.
    Help non-technical users understand and interpret data insights.
    Provide training and support on analytics tools.

  • Present & Communicate Insights
    Summarize findings and insights in clear and structured reports.
    Support the Data PO in preparing presentations and visualizations for business decision-making.
    Share insights in a way that is simple and actionable for business teams.

  • Continuously Learn & Improve
    Stay updated on the latest tools and trends in data analytics.
    Improve processes for better data efficiency and accuracy.
    Experiment with new techniques to enhance business impact.


Apply now if you have these advantages

  • 1–4 years of experience in data analysis, business intelligence, or related fields.
  • Experience working in a data-driven environment (data analytics lifecycle including problem identification, measurement/matrix, exploratory data analysis and data insight presentation) with business stakeholders.
  • Data Analysis & Visualization – Experience with Tableau, Power BI, Qlik, or other BI tools.
  • SQL Proficiency – Ability to query and manipulate data efficiently.
  • Basic Data Processing – Experience with data extraction, cleansing, and transformation.
  • Statistical Analysis – Ability to apply basic statistical techniques for insights.

  • Exposure to cross-functional teams involving data engineers, data scientists, and business users.
  • Experience in banking or financial services is a plus but not mandatory.


Why join Krungsri?

  • As a part of MUFG (Mitsubishi UFJ Financial Group), we a truly a global bank with networks all over the world.
  • We offer a striking work-life balance culture with hybrid work policies (2 days in office per week).
  • Unbelievable benefits such as attractive bonuses, employee loan with special rates and many more.



** Apply now before this role is close. **

Stay connected with KRUNGRI CAREER at:

  • FB: Krungsri Career(http://bit.ly/FacebookKrungsriCareer [link removed])
  • LINE: Krungsri Career (http://bit.ly/LineKrungsriCareer [link removed])

Talent Acquisition Department
Bank of Ayudhya Public Company Limited
1222 Rama III Rd., Bangpongpang, Yannawa, Bangkok 10120


āļŦāļĄāļēāļĒāđ€āļŦāļ•āļļ āļ˜āļ™āļēāļ„āļēāļĢāļĄāļĩāļ„āļ§āļēāļĄāļˆāļģāđ€āļ›āđ‡āļ™āđāļĨāļ°āļˆāļ°āļĄāļĩāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ›āļĢāļ°āļ§āļąāļ•āļīāļ­āļēāļŠāļāļēāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļœāļđāđ‰āļŠāļĄāļąāļ„āļĢ āļāđˆāļ­āļ™āļ—āļĩāđˆāļœāļđāđ‰āļŠāļĄāļąāļ„āļĢāļˆāļ°āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāđ€āļ‚āđ‰āļēāļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āļĻāļĢāļĩāļŊ


Remark: The bank needs to and will have a process for verifying personal information related to the criminal history of applicants before they are considered for employment with the bank.


Applicants can read the Personal Data Protection Announcement of the Bank's Human Resources Function by typing the link from the image that stated below.

EN (https://krungsri.com/b/privacynoticeen)


āļœāļđāđ‰āļŠāļĄāļąāļ„āļĢāļŠāļēāļĄāļēāļĢāļ–āļ­āđˆāļēāļ™āļ›āļĢāļ°āļāļēāļĻāļāļēāļĢāļ„āļļāđ‰āļĄāļ„āļĢāļ­āļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļŠāđˆāļ§āļ™āļšāļļāļ„āļ„āļĨāļŠāđˆāļ§āļ™āļ‡āļēāļ™āļ—āļĢāļąāļžāļĒāļēāļāļĢāļšāļļāļ„āļ„āļĨāļ‚āļ­āļ‡āļ˜āļ™āļēāļ„āļēāļĢāđ„āļ”āđ‰āđ‚āļ”āļĒāļāļēāļĢāļžāļīāļĄāļžāđŒāļĨāļīāļ‡āļ„āđŒāļˆāļēāļāļĢāļđāļ›āļ āļēāļžāļ—āļĩāđˆāļ›āļĢāļēāļāļŽāļ”āđ‰āļēāļ™āļĨāđˆāļēāļ‡

āļ āļēāļĐāļēāđ„āļ—āļĒ (https://krungsri.com/b/privacynoticeth)

āļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ—āļĩāđˆāļˆāļģāđ€āļ›āđ‡āļ™
  • āđ„āļĄāđˆāļĢāļ°āļšāļļāļ›āļĢāļ°āļŠāļšāļāļēāļĢāļ“āđŒāļ‚āļąāđ‰āļ™āļ•āđˆāļģ
āđ€āļ‡āļīāļ™āđ€āļ”āļ·āļ­āļ™
  • āļŠāļēāļĄāļēāļĢāļ–āļ•āđˆāļ­āļĢāļ­āļ‡āđ„āļ”āđ‰
āļŠāļēāļĒāļ‡āļēāļ™
  • āļ™āļąāļāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒ
āļ›āļĢāļ°āđ€āļ āļ—āļ‡āļēāļ™
  • āļ‡āļēāļ™āļ›āļĢāļ°āļˆāļģ

āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ—

āļˆāļģāļ™āļ§āļ™āļžāļ™āļąāļāļ‡āļēāļ™:2000-5000 āļ„āļ™
āļ›āļĢāļ°āđ€āļ āļ—āļšāļĢāļīāļĐāļąāļ—:āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ˜āļ™āļēāļ„āļēāļĢ
āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļšāļĢāļīāļĐāļąāļ—:āļāļĢāļļāļ‡āđ€āļ—āļž
āđ€āļ§āđ‡āļšāđ„āļ‹āļ•āđŒ:www.krungsri.com
āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ›āļĩ:1945
āļ„āļ°āđāļ™āļ™:4.5/5

āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āļĻāļĢāļĩāļ­āļĒāļļāļ˜āļĒāļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āļ—āļĩāđˆāļĢāļđāđ‰āļˆāļąāļāļāļąāļ™āđƒāļ™āļŠāļ·āđˆāļ­ "āļāļĢāļļāļ‡āļĻāļĢāļĩ" āđ€āļ›āđ‡āļ™āļ˜āļ™āļēāļ„āļēāļĢāļ—āļĩāđˆāđƒāļŦāļāđˆāđ€āļ›āđ‡āļ™āļ­āļąāļ™āļ”āļąāļšāļŦāđ‰āļēāđƒāļ™āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒāđƒāļ™āļ”āđ‰āļēāļ™āļŠāļīāļ™āļ—āļĢāļąāļžāļĒāđŒ āđ€āļ‡āļīāļ™āđƒāļŦāđ‰āļŠāļīāļ™āđ€āļŠāļ·āđˆāļ­ āđāļĨāļ°āđ€āļ‡āļīāļ™āļāļēā āļāđˆāļ­āļ•āļąāđ‰āļ‡āđ€āļĄāļ·āđˆāļ­āļ§āļąāļ™āļ—āļĩāđˆ 27 āļĄāļāļĢāļēāļ„āļĄ āļž.āļĻ. 2488 āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āļĻāļĢāļĩāđƒāļŦāđ‰āļšāļĢāļīāļāļēāļĢāļ—āļēāļ‡āļāļēāļĢāđ€āļ‡āļīāļ™āđāļĨāļ°āļāļēāļĢāļ˜āļ™āļēāļ„āļēāļĢāļ—āļĩāđˆāļ„āļĢāļšāļ§āļ‡ ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āļĢāđˆāļ§āļĄāļ‡āļēāļ™āļāļąāļšāđ€āļĢāļē:

Joining Krungsri means becoming part of a leading financial institution with a rich history and a strong commitment to innovation and excellence. As a member of the MUFG network, employees have access to international expertise and opportunities for global collaboration.&nbs ...

āļ­āđˆāļēāļ™āļ•āđˆāļ­

āđ€āļ‚āļ•āļ—āļĩāđˆāļ•āļąāđ‰āļ‡āļ—āļĩāđˆāļ—āļģāļ‡āļēāļ™: āļĒāļēāļ™āļ™āļēāļ§āļē
āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ: āļŠāļģāļ™āļąāļāļ‡āļēāļ™āđƒāļŦāļāđˆ 1222 āļ–āļ™āļ™āļžāļĢāļ°āļĢāļēāļĄāļ—āļĩāđˆ 3 āđāļ‚āļ§āļ‡āļšāļēāļ‡āđ‚āļžāļ‡āļžāļēāļ‡ āđ€āļ‚āļ•āļĒāļēāļ™āļ™āļēāļ§āļē āļāļĢāļļāļ‡āđ€āļ—āļžāļŊ 10120
Display map

āļŠāļ§āļąāļŠāļ”āļīāļāļēāļĢ

  • āļāļēāļĢāļžāļąāļ’āļ™āļēāđ€āļžāļ·āđˆāļ­āļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļĄāļ·āļ­āļ­āļēāļŠāļĩāļž
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļąāļ‡āļ„āļĄ
  • āđ‚āļšāļ™āļąāļŠāļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļœāļĨāļ›āļĢāļ°āļāļ­āļšāļāļēāļĢ
  • āđ‚āļ„āļĢāļ‡āļāļēāļĢāļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāļ„āļļāļ“āļ āļēāļžāļŠāļĩāļ§āļīāļ•
  • āļ›āļĢāļ°āļāļąāļ™āļ—āļąāļ™āļ•āļāļĢāļĢāļĄ
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļļāļ‚āļ āļēāļž
  • āđ‚āļ­āļāļēāļŠāđƒāļ™āļāļēāļĢāđ€āļĢāļĩāļĒāļ™āļĢāļđāđ‰āđāļĨāļ°āļžāļąāļ’āļ™āļē
  • āļ›āļĢāļ°āļāļąāļ™āļŠāļĩāļ§āļīāļ•
  • āđ‚āļšāļ™āļąāļŠāļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļœāļĨāļ‡āļēāļ™
  • āļ„āđˆāļēāđ€āļ”āļīāļ™āļ—āļēāļ‡

āļ•āļģāđāļŦāļ™āđˆāļ‡āļ‡āļēāļ™āļ§āđˆāļēāļ‡āļ—āļĩāđˆāļ„āļļāļ“āļ™āđˆāļēāļˆāļ°āļŠāļ™āđƒāļˆ

āļ”āļđāļ‡āļēāļ™āļ—āļąāđ‰āļ‡āļŦāļĄāļ” >

āļ—āļĩāđˆ WorkVenture āđ€āļĢāļēāđƒāļŦāđ‰āļĄāļđāļĨāđ€āļŠāļīāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āļĻāļĢāļĩāļ­āļĒāļļāļ˜āļĒāļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āđ‚āļ”āļĒāļĄāļĩāļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļĩāđˆāđ€āļāļĩāđˆāļĒāļ§āļ‚āđ‰āļ­āļ‡ āļ•āļąāđ‰āļ‡āđāļ•āđˆāļ āļēāļžāļšāļĢāļĢāļĒāļēāļāļēāļĻāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļĢāļđāļ›āļ–āđˆāļēāļĒāļ‚āļ­āļ‡āļ—āļĩāļĄāļ‡āļēāļ™ āđ„āļ›āļˆāļ™āļ–āļķāļ‡āļĢāļĩāļ§āļīāļ§āđ€āļŠāļīāļ‡āļĨāļķāļāļ‚āļ­āļ‡āļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™ āļ‹āļķāđˆāļ‡āļ‚āđ‰āļ­āļĄāļđāļĨāļ—āļļāļāļ­āļĒāđˆāļēāļ‡āļšāļ™āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āļĻāļĢāļĩāļ­āļĒāļļāļ˜āļĒāļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļĄāļĩāļžāļ™āļąāļāļ‡āļēāļ™āļ—āļĩāđˆāļāļģāļĨāļąāļ‡āļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļšāļĢāļīāļĐāļąāļ— āļ˜āļ™āļēāļ„āļēāļĢāļāļĢāļļāļ‡āļĻāļĢāļĩāļ­āļĒāļļāļ˜āļĒāļē āļˆāļģāļāļąāļ” (āļĄāļŦāļēāļŠāļ™) āļŦāļĢāļ·āļ­āđ€āļ„āļĒāļ—āļģāļ‡āļēāļ™āļ—āļĩāđˆāļ™āļąāđˆāļ™āļˆāļĢāļīāļ‡āđ† āđ€āļ›āđ‡āļ™āļ„āļ™āđƒāļŦāđ‰āļ‚āđ‰āļ­āļĄāļđāļĨāļˆāļĢāļīāļ‡āļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļžāļīāļ™āļ™āļēāđ€āļ„āļīāļĨ āđāļāđŠāļŠāđ‚āļ•āļĢāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļžāļĢāļ°āļ™āļ„āļĢ āļ„āļ­āļŸāļŸāļĩāđˆāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ āļšāļ­āļ™āļ”āđŒ āļ­āļīāļ™āđ‚āļ™āđ€āļ§āļ™āđ€āļˆāļ­āļĢāđŒāļŠāļĄāļąāļ„āļĢāļ‡āļēāļ™ Infographic